

Advance Praise for Head First C#

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the
last. If you want to learn C# in depth and have fun doing it, this is THE book for you.”

— Andy Parker, fledgling C# programmer

“It’s hard to really learn a programming language without good engaging examples, and this book is full
of them! Head First C# will guide beginners of all sorts to a long and productive relationship with C#
and the .NET Framework.”

—Chris Burrows, developer for Microsoft’s C# Compiler team

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very
approachable while covering a great amount of detail in a unique style. If you’ve been turned off by
more conventional books on C#, you’ll love this one.”

—Jay Hilyard, software developer, co-author of C# 3.0 Cookbook

“I’d reccomend this book to anyone looking for a great introduction into the world of programming and
C#. From the first page onwards, the authors walks the reader through some of the more challenging
concepts of C# in a simple, easy-to-follow way. At the end of some of the larger projects/labs, the
reader can look back at their programs and stand in awe of what they’ve accomplished.”

—David Sterling, developer for Microsoft’s Visual C# Compiler team

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its
lively style is sure to captivate readers—from the humorously annotated examples, to the Fireside Chats,
where the abstract class and interface butt heads in a heated argument! For anyone new to programming,
there’s no better way to dive in.”

—�Joseph Albahari, C# Design Architect at Egton Medical Information Systems,
the UK’s largest primary healthcare software supplier,
co-author of C# 3.0 in a Nutshell

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer
wanting to jump into the C# waters. I will recommend it to the advanced developer that wants to
understand better what is happening with their code. [I will recommend it to developers who] want to
find a better way to explain how C# works to their less-seasoned developer friends.”

—Giuseppe Turitto, C# and ASP.NET developer for Cornwall Consulting Group

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a
computer, and enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, software engineer

“Going through this Head First C# book was a great experience. I have not come across a book series
which actually teaches you so well.…This is a book I would definitely recommend to people wanting to
learn C#”

—Krishna Pala, MCP

Praise for other Head First books

“Kathy and Bert’s Head First Java transforms the printed page into the closest thing to a GUI you’ve ever
seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’
experience.”

—Warren Keuffel, Software Development Magazine

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status,
Head First Java covers a huge amount of practical matters that other texts leave as the dreaded “exercise
for the reader….”  It’s clever, wry, hip and practical—there aren’t a lot of textbooks that can make that
claim and live up to it while also teaching you about object serialization and network launch protocols.  ”

—�Dr. Dan Russell, Director of User Sciences and Experience Research
IBM Almaden Research Center (and teaches Artificial Intelligence at
Stanford University)

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

—�Ken Arnold, former Senior Engineer at Sun Microsystems
Co-author (with James Gosling, creator of Java),
The Java Programming Language

“I feel like a thousand pounds of books have just been lifted off of my head.”

—Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of tired
stale professor-speak.”

—�Travis Kalanick, Founder of Scour and Red Swoosh
Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-
eared, mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I
have for review is tattered and torn.”

— �Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

— �Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Praise for other Head First books

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

— �Erich Gamma, IBM Distinguished Engineer, and co-author of
Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— �Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— �Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— �Ken Goldstein, Executive Vice President, Disney Online

“I ♥ Head First HTML with CSS & XHTML—it teaches you everything you need to learn in a ‘fun
coated’ format.”

— �Sally Applin, UI Designer and Artist

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller… Bueller… Bueller…’ this book is on the float
belting out ‘Shake it up, baby!’”

— �Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— �Satish Kumar

Other related books from O’Reilly

Programming C# 4.0

C# 4.0 in a Nutshell

C# Essentials

C# Language Pocket Reference

Other books in O’Reilly’s Head First series

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head Rush Ajax

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First PMP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Statistics

Head First Physics

Head First Programming

Head First Ruby on Rails

Head First PHP & MySQL

Head First Algebra

Head First Data Analysis

Head First Excel

Beijing • Cambridge • K�ln • Sebastopol • Taipei • Tokyo

Andrew Stellman
Jennifer Greene

Head First C#
Second Edition

Wouldn’t it be dreamy
if there was a C# book that
was more fun than endlessly

debugging code? It’s probably
nothing but a fantasy....

Head First C#
Second Edition

by Andrew Stellman and Jennifer Greene

Copyright © 2010 Andrew Stellman and Jennifer Greene. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates

Cover Designers:		 Louise Barr, Karen Montgomery

Production Editor:		 Rachel Monaghan

Proofreader:			 Emily Quill

Indexer:			 Lucie Haskins

Page Viewers:	 	 Quentin the whippet and Tequila the pomeranian

Printing History:
November 2007: First Edition.
May 2010: Second Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#,
and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic and Visual C# are registered trademarks of
Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.

ISBN: 978-1-449-38034-2

[SB]										

http://my.safaribooksonline.com
mailto:corporate@oreilly.com

This book is dedicated to the loving memory of Sludgie the Whale,
who swam to Brooklyn on April 17, 2007.

You were only in our canal for a day,
but you’ll be in our hearts forever.

viii

Jennifer Greene studied philosophy in
college but, like everyone else in the field, couldn’t
find a job doing it. Luckily, she’s a great software
engineer, so she started out working at an online
service, and that’s the first time she really got a
good sense of what good software development
looked like.

She moved to New York in 1998 to work on
software quallity at a financial software company.
She managed a team of testers at a really cool
startup that did artificial intelligence and natural
language processing.

Since then, she’s traveled all over the world to work
with different software teams and build all kinds of
cool projects.

She loves traveling, watching Bollywood movies,
reading the occasional comic book, playing PS3
games (especially LittleBigPlanet!), and owning a
whippet.

Andrew Stellman, despite being raised a
New Yorker, has lived in Pittsburgh twice. The
first time was when he graduated from Carnegie
Mellon’s School of Computer Science, and then
again when he and Jenny were starting their
consulting business and writing their first book for
O’Reilly.

When he moved back to his hometown, his first
job after college was as a programmer at EMI-
Capitol Records—which actually made sense,
since he went to LaGuardia High School of
Music and Art and the Performing Arts to study
cello and jazz bass guitar. He and Jenny first
worked together at that same financial software
company, where he was managing a team of
programmers. He’s had the privilege of working
with some pretty amazing programmers over the
years, and likes to think that he’s learned a few
things from them.

When he’s not writing books, Andrew keeps
himself busy writing useless (but fun) software,
playing music (but video games even more),
experimenting with circuits that make odd noises,
studying taiji and aikido, having a girlfriend
named Lisa, and owning a pomeranian.

the authors

Jenny and Andrew have been building software and writing about software engineering together since they

first met in 1998. Their first book, Applied Software Project Management, was published by O’Reilly in

2005. They published their first book in the Head First series, Head First PMP, in 2007.

They founded Stellman & Greene Consulting in 2003 to build a really neat software project for
scientists studying herbicide exposure in Vietnam vets. When they’re not building software or writing
books, they do a lot of speaking at conferences and meetings of software engineers, architects and
project managers.
Check out their blog, Building Better Software: http://www.stellman-greene.com

Jenny

Andrew

Thanks for buying our book! We really
love writing about this stuff, and we
hope you get a kick out of reading it… …because we know

you’re going to have a
great time learning C#.

This photo (and the photo of the
Gowanus Canal) by Nisha Sondhe

http://www.stellman-greene.com
http://www.stellman-greene.com

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on C#. � You’re sitting around trying to learn something, but

your brain keeps telling you all that learning isn’t important. Your brain’s saying,

“Better leave room for more important things, like which wild animals to avoid and

whether nude archery is a bad idea.” So how do you trick your brain into thinking

that your life really depends on learning C#?

Intro

Who is this book for?	 xxx

We know what you’re thinking	 xxxi

Metacognition	 xxxiii

Bend your brain into submission	 xxxv

What you need for this book	 xxxvi

Read me	 xxxvii

The technical review team	 xxxviii

Acknowledgments	 xxxix

 	 Intro	 xxix

1	 Get productive with C#: Visual Applications, in 10 minutes or less	 1

2	 It’s All Just Code: Under the hood	 41

3	 Objects: Get Oriented: Making code make sense	 85

4	 Types and References: It’s 10:00. Do you know where your data is?	 125

 	 C# Lab 1: A Day at the races	 169

5	 Encapsulation: Keep your privates… private	 179

6	 Inheritance: Your object’s family tree	 215

7	 Interfaces and abstract classes: Making classes keep their promises	 269

8	 Enums and collections: Storing lots of data	 327

 	 C# Lab 2: The Quest	 385

9	 Reading and Writing Files: Save the byte array, save the world	 407

10	 Exception Handling: Putting out fires gets old	 463

11	 Events and Delegates: What your code does when you’re not looking	 507

12	 Review and Preview: Knowledge, power, and building cool stuff	 541

13	 Controls and Graphics: Make it pretty	 589

14	 Captain Amazing: The Death of the Object	 647

15	 LINQ: Get control of your data	 685

 	 C# Lab 3: Invaders	 713

i	 Leftovers: The top 11 things we wanted to include in this book	 735

table of contents

x

Visual Applications, in 10 minutes or less1 Want to build great programs really fast?�
With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to focus on getting your work done, rather than remembering which method

parameter was for the name of a button, and which one was for its label. Sound

appealing? Turn the page, and let’s get programming.

get productive with C#

Why you should learn C#					 2

C# and the Visual Studio IDE make lots of things easy		 3

Help the CEO go paperless					 4

Get to know your users’ needs before you start
building your program					 5

What you do in Visual Studio…				 8

What Visual Studio does for you…				 8

Develop the user interface					 12

Visual Studio, behind the scenes				 14

Add to the auto-generated code				 15

We need a database to store our information			 18

The IDE created a database					 19

SQL is its own language					 19

Creating the table for the Contact List				 20

Finish building the table					 25

Insert your card data into the database				 26

Connect your form to your database objects with a data source	 28

Add database-driven controls to your form			 30

How to turn YOUR application into EVERYONE’S application	 35

Give your users the application				 36

You’re NOT done: test your installation				 37

You’ve built a complete data-driven application			 38

table of contents

xi

Under the hood
You’re a programmer, not just an IDE user.�
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

it’s all just code

2
When you’re doing this…					 42

…the IDE does this						 43

Where programs come from					 44

The IDE helps you code					 46

When you change things in the IDE, you’re also changing
your code							 4849
Anatomy of a program					 50

Your program knows where to start				 5253
Two classes can be in the same namespace			 59

Your programs use variables to work with data			 60

C# uses familiar math symbols				 62

Use the debugger to see your variables change			 63

Loops perform an action over and over				 65

Time to start coding					 66

if/else statements make decisions				 67

Set up conditions and see if they’re true				 68

table of contents

xii

3 Making Code Make Sense
Every program you write solves a problem.�
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

objects: get oriented!

new Navigator()

new
 Na

vig
ato

r()

new Navigator()

How Mike thinks about his problems				 86

How Mike’s car navigation system thinks about his problems	 87

Mike’s Navigator class has methods to set and modify routes		 88

Use what you’ve learned to build a program that uses a class	 8990
Mike can use objects to solve his problem			 92

You use a class to build an object				 93

When you create a new object from a class, it’s called an instance
of that class						 94

A better solution…brought to you by objects!			 95

An instance uses fields to keep track of things			 100

Let’s create some instances!					 101

What’s on your program’s mind				 103

You can use class and method names to make your code intuitive	 104

Give your classes a natural structure				 106

Class diagrams help you organize your classes so they make sense	 108

Build a class to work with some guys				 112

Create a project for your guys					 113

Build a form to interact with the guys				 114

There’s an easier way to initialize objects			 117

table of contents

xiii

4 It’s 10:00. Do you know where your data is?
Data type, database, Lieutenant Commander Data…
it’s all important stuff. �Without data, your programs are useless. You

need information from your users, and you use that to look up or produce new

information to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you’ll learn the

ins and outs of C#’s data types, see how to work with data in your program, and

even figure out a few dirty secrets about objects (pssst…objects are data, too).

types and references

The variable’s type determines what kind of data it can store	 126

A variable is like a data to-go cup				 128

10 pounds of data in a 5 pound bag				 129

Even when a number is the right size, you can’t just assign it to
any variable						 130

When you cast a value that’s too big, C# will adjust it automatically	 131

C# does some casting automatically				 132

When you call a method, the arguments must be compatible
with the types of the parameters				 133

Combining = with an operator 				 138

Objects use variables, too					 139

Refer to your objects with reference variables			 140

References are like labels for your object			 141

If there aren’t any more references, your object gets
garbage-collected						 142

Multiple references and their side effects			 144

Two references means TWO ways to change an object’s data	 149

A special case: arrays					 150

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!	 152

Objects use references to talk to each other			 154

Where no object has gone before				 155

Build a typing game					 160

fido

Luck
y

fido
Luck

y

table of contents

xiv

Joe, Bob, and Al love going to the track, but they’re
tired of losing all their money. They need you to build a
simulator for them so they can figure out winners before
they lay their money down. And, if you do a good job,
they’ll cut you in on their profits.

C# Lab 1
A Day at the Races

The spec: build a racetrack simulator				 170

The Finished Product					 178

table of contents

xv

5 Keep your privates… private

Ever wished for a little more privacy?�
Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don’t let other objects go poking around their fields. In this chapter, you’re going to

learn about the power of encapsulation. You’ll make your object’s data private, and

add methods to protect how that data is accessed.

encapsulation

Kathleen is an event planner					 180

What does the estimator do?					 181

Kathleen’s Test Drive					 186

Each option should be calculated individually			 188

It’s easy to accidentally misuse your objects			 190

Encapsulation means keeping some of the data in a class private	 191

Use encapsulation to control access to your class’s methods
and fields							 192

But is the realName field REALLY protected?			 193

Private fields and methods can only be accessed from
inside the class 						 194

Encapsulation keeps your data pristine				 202

Properties make encapsulation easier				 203

Build an application to test the Farmer class			 204

Use automatic properties to finish the class			 205

What if we want to change the feed multiplier?			 206

Use a constructor to initialize private fields			 207

table of contents

xvi

6 Your object’s family tree
Sometimes you DO want to be just like your parents.
Ever run across an object that almost does exactly what you want your object to do?

Found yourself wishing that if you could just change a few things, that object would

be perfect? Well, that’s just one reason that inheritance is one of the most powerful

concepts and techniques in the C# language. Before you’re through with this chapter,

you’ll learn how to subclass an object to get its behavior, but keep the flexibility to

make changes to that behavior. You’ll avoid duplicate code, model the real world

more closely, and end up with code that’s easier to maintain.

inheritance

Kathleen does birthday parties, too				 216

We need a BirthdayParty class				 217

Build the Party Planner version 2.0				 218

When your classes use inheritance, you only need to write
your code once						 226

Kathleen needs to figure out the cost of her parties, no matter what
kind of parties they are.					 226

Build up your class model by starting general and getting
more specific						 227

How would you design a zoo simulator?				 228

Use inheritance to avoid duplicate code in subclasses		 2290
Think about how to group the animals				 231

Create the class hierarchy					 232

Every subclass extends its base class				 233

A subclass can override methods to change or replace methods
it inherited						 238

Any place where you can use a base class, you can use one of
its subclasses instead					 239

A subclass can hide methods in the superclass			 246

Use the override and virtual keywords to inherit behavior		 248251
Now you’re ready to finish the job for Kathleen!		 252

Build a beehive management system				 257

First you’ll build the basic system				 258

Use inheritance to extend the bee management system		 263

table of contents

xvii

7 Making classes keep their promises

Actions speak louder than words.�
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great

responsibility, and any class that implements an interface must promise to fulfill all of

its obligations…or the compiler will break their kneecaps, see?

interfaces and abstract classes

Let’s get back to bee-sics					 270

We can use inheritance to create classes for different types of bees	 271

An interface tells a class that it must implement certain methods
and properties						 272

Use the interface keyword to define an interface			 273

Classes that implement interfaces have to include ALL of the
interface’s methods 						 275

You can’t instantiate an interface, but you can reference an interface	 278278

Interface references work just like object references		 279

You can find out if a class implements a certain interface with “is”	 280

Interfaces can inherit from other interfaces			 281

Upcasting works with both objects and interfaces			 285

Downcasting lets you turn your appliance back into a coffee maker	 286

Upcasting and downcasting work with interfaces, too		 287

There’s more than just public and private			 291

Access modifiers change visibility				 292

Some classes should never be instantiated			 295

An abstract class is like a cross between a class and an interface	 296

An abstract method doesn’t have a body			 299

Polymorphism means that one object can take many different forms	 307

table of contents

xviii

8 Storing lots of data
When it rains, it pours.�
In the real world, you don’t get to handle your data in tiny little bits and pieces.

No, your data’s going to come at you in loads, piles, and bunches. You’ll need

some pretty powerful tools to organize all of it, and that’s where collections

come in. They let you store, sort, and manage all the data that your programs

need to pore through. That way, you can think about writing programs to work

with your data, and let the collections worry about keeping track of it for you.

enums and collections

Strings don’t always work for storing categories of data		 328

Enums let you work with a set of valid values			 329

Enums let you represent numbers with names			 330

We could use an array to create a deck of cards…			 333

Lists are more flexible than arrays				 336

Generics can store any type					 340

Collection initializers work just like object initializers		 344

Let’s create a List of Ducks					 345

Lists are easy, but SORTING can be tricky			 346

IComparable <Duck> helps your list sort its ducks		 347

Use IComparer to tell your List how to sort			 348

Create an instance of your comparer object			 349

IComparer can do complex comparisons			 350

Overriding a ToString() method lets an object describe itself 	 353

Update your foreach loops to let your Ducks and Cards
print themselves						 354

You can upcast an entire list using IEnumerable			 356

You can build your own overloaded methods			 357

The Dictionary Functionality Rundown				 364

Build a program that uses a Dictionary				 365

And yet MORE collection types…				 377

A queue is FIFO—First In, First Out				 378

A stack is LIFO—Last In, First Out				 379

poof!

table of contents

xix

C# Lab 2
The Quest

Your job is to build an adventure game where a mighty
adventurer is on a quest to defeat level after level of
deadly enemies. You’ll build a turn-based system, which
means the player makes one move and then the enemies
make one move. The player can move or attack, and then
each enemy gets a chance to move and attack. The game
keeps going until the player either defeats all the enemies
on all seven levels or dies.

The spec: build an adventure game				 386

The fun’s just beginning!					 406

table of contents

xx

9 Save the byte array, save the world
Sometimes it pays to be a little persistent.�
So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that’s not always enough, especially when you’re

dealing with important information. You need to be able to save your work. In

this chapter, we’ll look at how to write data to a file, and then how to read that

information back in from a file. You’ll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

reading and writing files

69 117 114 101 107 97 33

.NET uses streams to read and write data			 408

Different streams read and write different things			 409

A FileStream reads and writes bytes to a file			 410

How to write text to a file in 3 simple steps			 411

Reading and writing using two objects				 415

Data can go through more than one stream			 416

Use built-in objects to pop up standard dialog boxes		 419

Dialog boxes are just another .NET control			 420

Dialog boxes are objects, too					 421

IDisposable makes sure your objects are disposed of properly	 427

Avoid file system errors with using statements			 428

Writing files usually involves making a lot of decisions		 434

Use a switch statement to choose the right option			 435

Serialization lets you read or write a whole object all at once	 442

.NET uses Unicode to store characters and text			 447

C# can use byte arrays to move data around			 448

You can read and write serialized files manually, too		 451

Working with binary files can be tricky				 453

Use file streams to build a hex dumper				 454

StreamReader and StreamWriter will do just fine (for now)		 455

Use Stream.Read() to read bytes from a stream			 456

table of contents

xxi

10 Putting out fires gets old
Programmers aren’t meant to be firefighters.�
You’ve worked your tail off, waded through technical manuals and a few engaging

Head First books, and you’ve reached the pinnacle of your profession: master

programmer. But you’re still getting panicked phone calls in the middle of the night

from work because your program crashes, or doesn’t behave like it’s supposed

to. Nothing pulls you out of the programming groove like having to fix a strange bug…

but with exception handling, you can write code to deal with problems that come up.

Better yet, you can even react to those problems, and keep things running.

exception handling

Brian needs his excuses to be mobile				 464

When your program throws an exception, .NET generates an
Exception object.						 468

All exception objects inherit from Exception			 472

The debugger helps you track down and prevent exceptions
in your code						 473

Use the IDE’s debugger to ferret out exactly what went wrong in the
Excuse Manager						 474

Handle exceptions with try and catch				 479

What happens when a method you want to call is risky?		 480

Use the debugger to follow the try/catch flow			 482

If you have code that ALWAYS should run, use a finally block	 484

One class throws an exception, another class catches the exception	 491

Bees need an OutOfHoney exception				 492

An easy way to avoid a lot of problems:
using gives you try and finally for free				 495

Exception avoidance: implement IDisposable to
do your own cleanup					 496

The worst catch block EVER: catch-all plus comments		 498

Temporary solutions are OK (temporarily)			 499

A few simple ideas for exception handling			 500

Brian finally gets his vacation…				 505

table of contents

xxii

11 What your code does when you’re not looking
events and delegates

Your objects are starting to think for themselves.�
You can’t always control what your objects are doing. Sometimes things…happen. And

when they do, you want your objects to be smart enough to respond to anything that

pops up. And that’s what events are all about. One object publishes an event, other

objects subscribe, and everyone works together to keep things moving. Which is great,

until you want your object to take control over who can listen. That’s when callbacks will

come in handy.

Ever wish your objects could think for themselves?		 508

But how does an object KNOW to respond?			 508

When an EVENT occurs…objects listen			 509

Then, the other objects handle the event			 511

Connecting the dots					 512

The IDE creates event handlers for you automatically		 516

Generic EventHandlers let you define your own event types		 522

The forms you’ve been building all use events			 523

One event, multiple handlers					 524

Connecting event senders with event receivers			 526

A delegate STANDS IN for an actual method			 527

Delegates in action						 528

An object can subscribe to an event…				 531

Use a callback to control who’s listening				 532

A callback is just a way to use delegates				 534

table of contents

xxiii

12 Knowledge, power, and building cool stuff
review and preview

Learning’s no good until you BUILD something.�
Until you’ve actually written working code, it’s hard to be sure if you really get some

of the tougher concepts in C#. In this chapter, we’re going to use what we’ve learned

to do just that. We’ll also get a preview of some of the new ideas coming up soon.

And we’ll do all that by building phase I of a really complex application to make

sure you’ve got a good handle on what you’ve already learned from earlier chapters.

So buckle up…it’s time to build some software!

You’ve come a long way, baby					 542

We’ve also become beekeepers				 543

The beehive simulator architecture				 544

Building the beehive simulator				 545

Life and death of a flower					 549

Now we need a Bee class					 550

P. A. H. B. (Programmers Against Homeless Bees)			 554

The hive runs on honey					 554

Filling out the Hive class					 558

The hive’s Go() method					 559

We’re ready for the World					 560

We’re building a turn-based system				 561

Here’s the code for World					 562

Giving the bees behavior					 568

The main form tells the world to Go()				 570

We can use World to get statistics				 571

Timers fire events over and over again				 572

Let’s work with groups of bees				 580

A collection collects…DATA					 581

LINQ makes working with data in collections and databases easy	 583

One final challenge: Open and Save				 585

table of contents

xxiv

13 Make it pretty
controls and graphics

Sometimes you have to take graphics into your own hands.�
We’ve spent a lot of time relying on controls to handle everything visual in our applications.

But sometimes that’s not enough—like when you want to animate a picture. And once

you get into animation, you’ll end up creating your own controls for your .NET programs,

maybe adding a little double buffering, and even drawing directly onto your forms.

It all begins with the Graphics object, bitmaps, and a determination to not accept the

graphics status quo.

You’ve been using controls all along to interact with your programs	 590

Form controls are just objects					 591

Use controls to animate the beehive simulator			 592

Add a renderer to your architecture				 594

Controls are well suited for visual display elements		 596

Build your first animated control				 599

Create a button to add the BeeControl to your form		 602

Your controls need to dispose their controls, too!			 603

A UserControl is an easy way to build a control			 604

Your simulator’s renderer will use your BeeControl to draw
animated bees on your forms					 606

Add the hive and field forms to the project			 608

Build the renderer						 609

You resized your Bitmaps using a Graphics object			 618

Your image resources are stored in Bitmap objects		 619

Use System.Drawing to TAKE CONTROL of graphics yourself 	 620

A 30-second tour of GDI+ graphics				 621

Use graphics to draw a picture on a form			 622

Graphics can fix our transparency problem…			 627

Use the Paint event to make your graphics stick			 628

A closer look at how forms and controls repaint themselves		 631

Double buffering makes animation look a lot smoother		 634

Use a Graphics object and an event handler for printing		 640

table of contents

xxv

14 CAPTAIN AMAZING
THE DEATH

OF THE OBJECT

Your last chance to DO something…your object’s finalizer		 654

When EXACTLY does a finalizer run?				 655

Dispose() works with using, finalizers work with garbage collection	 656

Finalizers can’t depend on stability				 658

Make an object serialize itself in its Dispose()			 659

A struct looks like an object…				 663

…but isn’t an object					 663

Values get copied; references get assigned			 664

The stack vs. the heap: more on memory			 667

Use out parameters to make a method return more than one value	 670

Pass by reference using the ref modifier				 671

Use optional parameters to set default values			 672

Use nullable types when you need nonexistent values		 673

Nullable types help you make your programs more robust		 674

Captain Amazing…not so much				 677

Extension methods add new behavior to EXISTING classes	 678

Extending a fundamental type: string				 6800

table of contents

xxvi

15 Get control of your data
LINQ

It’s a data-driven world…you better know how to live in it.�
Gone are the days when you could program for days, even weeks, without dealing with

loads of data. But today, everything is about data. In fact, you’ll often have to work

with data from more than one place…and in more than one format. Databases, XML,

collections from other programs…it’s all part of the job of a good C# programmer. And

that’s where LINQ comes in. LINQ not only lets you query data in a simple, intuitive way,

but it lets you group data, and merge data from different data sources.

An easy project…						 686

…but the data’s all over the place				 687

LINQ can pull data from multiple sources			 688

.NET collections are already set up for LINQ			 689

LINQ makes queries easy					 690

LINQ is simple, but your queries don’t have to be			 691

LINQ is versatile						 694

LINQ can combine your results into groups			 699

Combine Jimmy’s values into groups				 700

Use join to combine two collections into one query		 703

Jimmy saved a bunch of dough				 704

Connect LINQ to a SQL database				 706

Use a join query to connect Starbuzz and Objectville		 710

table of contents

xxvii

C# Lab 3
Invaders

In this lab you’ll pay homage to one of the most popular,
revered and replicated icons in video game history, a
game that needs no further introduction. It’s time to
build Invaders.

The grandfather of video games				 714

And yet there’s more to do…					 733

table of contents

xxviii

i The top 11 things we wanted to include
in this book

leftovers

The fun’s just beginning!�
We’ve shown you a lot of great tools to build some really powerful software with C#. But

there’s no way that we could include every single tool, technology, or technique in this

book—there just aren’t enough pages. We had to make some really tough choices about

what to include and what to leave out. Here are some of the topics that didn’t make the

cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

#1. The Basics						 736

#2. Namespaces and assemblies				 742

#3. Use BackgroundWorker to make your UI responsive		 746

#4. The Type class and GetType()				 749

#5. Equality, IEquatable, and Equals()				 750

#6. Using yield return to create enumerable objects		 753

#7. Refactoring						 756

#8. Anonymous types, anonymous methods, and
lambda expressions						 758

#9. Serializing data using DataContractSerializer			 760

#10. LINQ to XML					 762

#11. Windows Presentation Foundation				 764

Did you know that C# and the .NET Framework can…		 766

xxix

how to use this book

Intro
I can’t believe they

put that in a C#
programming book!

In this section, we answer the burning question:

“So why DID they put that in a C# programming book?”

xxx   intro

how to use this book

1

2

3

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card.]

Do you want to learn C#?

Do you like to tinker—do you learn by doing, rather than
just reading?

Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

1

2

3

Does the idea of writing a lot of code make you bored
and a little twitchy?

Are you a kick-butt C++ or Java programmer looking for
a reference book?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if C# concepts are anthropomorphized?

you are here 4   xxxi

the intro

Great. Only
700 more dull,

dry, boring pages.

We know what you’re thinking.

And we know what your brain is thinking.

“How can this be a serious C# programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with
the brain’s real job—recording things that matter. It doesn’t bother
saving the boring things; they never make it past the “this is obviously
not important” filter.

How does your brain know what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger‑free zone.
You’re studying. Getting ready for an exam. Or trying to learn some
tough technical topic your boss thinks will take a week, ten days at
the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never have posted those “party” photos on your Facebook page.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth
saving.

xxxii   intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the

words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to

solve problems related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you

actively flex your neurons, nothing much happens in your head. A reader

has to be motivated, engaged, curious, and inspired to solve problems, draw

conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both

sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this but

I can’t stay awake past page one” experience. Your brain pays attention to things that are out of

the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough,

technical topic doesn’t have to be boring. Your brain will learn much more quickly if

it’s not.

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember what

you care about. You remember when you feel something. No, we’re not talking

heart‑wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I Rule!” that comes when

you solve a puzzle, learn something everybody else thinks is hard, or realize you

know something that “I’m more technical than thou” Bob from engineering doesn’t.

you are here 4   xxxiii

the intro

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to
build programs in C#. And you probably don’t want to spend a lot of time. If you
want to use what you read in this book, you need to remember what you read. And
for that, you’ve got to understand it. To get the most from this book, or any book or
learning experience, take responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning
as Really Important. Crucial to your well-being. As important as
a tiger. Otherwise, you’re in for a constant battle, with your brain
doing its best to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain

into remembering
this stuff…

So just how DO you get your brain to treat C# like
it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way.
The slow way is about sheer repetition. You obviously know that
you are able to learn and remember even the dullest of topics
if you keep pounding the same thing into your brain. With enough
repetition, your brain says, “This doesn’t feel important to him, but he keeps looking
at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxxiv   intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your
brain’s concerned, a picture really is worth a thousand words. And when text and
pictures work together, we embedded the text in the pictures because your brain
works more effectively when the text is within the thing the text refers to, as opposed
to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, and someone else just
wants to see an example. But regardless of your own learning preference, everyone
benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to
make any number of houses,
and you can use one class to
make any number of objects.

you are here 4   xxxv

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

1

3

4

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

6

7

9 Write a lot of software!
There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to do
throughout this book. Coding is a skill, and the only
way to get good at it is to practice. We’re going to
give you a lot of practice: every chapter has exercises
that pose a problem for you to solve. Don’t just skip
over them—a lot of the learning happens when
you solve the exercises. We included a solution to
each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged on
something small.) But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

Listen to your brain.

8 Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to					 bend
your brain into submission

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

xxxvi   intro

how to use this book

We wrote this book using Visual C# 2010 Express Edition, which uses C# 4.0 and .NET Framework 4.0. All of
the screenshots that you see throughout the book were taken from that edition, so we recommend that you use it.
If you’re using Visual Studio 2010 Professional, Premium, Ultimate or Test Professional editions, you’ll see some
small differences, which we’ve pointed out wherever possible. You can download the Express Edition for free
from Microsoft’s website—it installs cleanly alongside other editions, as well as previous versions of Visual Studio.

 SETTING UP VISUAL STUDIO 2010 EXPRESS EDITION
�	 It’s easy enough to download and install Visual C# 2010 Express Edition. Here’s the link to the Visual Studio

2010 Express Edition download page:
	
http://www.microsoft.com/express/downloads/
	
You don’t need to check any of the options in the installer to get the code in this book to run, but feel free to if
you want. 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�	 Download the installation package for Visual C# 2010 Express Edition. Make sure you do a complete
installation. That should install everything that you need: the IDE (which you’ll learn about),.NET Framework
4.0, and other tools.

�	 Once you’ve got it installed, you’ll have a new Start menu option: Microsoft Visual C# 2010 Express Edition.
Click on it to bring up the IDE, and you’re all set.

What you need for this book:

If you absolutely must use an
older version of Visual Studio,
C# or the .NET Framework,
then please keep in mind that
you’ll come across topics in this
book that won’t be compatible
with your version. The C# team
at Microsoft has added some
pretty cool features to the
language. Keep in mind that
if you’re not using the latest
version, there will be some code
in this book that won’t work.

http://www.microsoft.com/express/downloads/

you are here 4   xxxvii

the intro

Read me
This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at
that point in the book. And the first time through, you need to begin at the beginning,
because the book makes assumptions about what you’ve already seen and learned.

The activities are NOT optional.
The exercises and activities are not add-ons; they’re part of the core content of the
book. Some of them are to help with memory, some for understanding, and some to
help you apply what you’ve learned. Don’t skip the written problems. The pool
puzzles are the only things you don’t have to do, but they’re good for giving your brain a
chance to think about twisty little logic puzzles.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see
some of the same concepts come up more than once.

Do all the exercises!
The one big assumption that we made when we wrote this book is that you want to
learn how to program in C#. So we know you want to get your hands dirty right away,
and dig right into the code. We gave you a lot of opportunities to sharpen your skills
by putting exercises in every chapter. We’ve labeled some of them “Do this!”—when
you see that, it means that we’ll walk you through all of the steps to solve a particular
problem. But when you see the Exercise logo with the running shoes, then we’ve left
a big portion of the problem up to you to solve, and we gave you the solution that we
came up with. Don’t be afraid to peek at the solution—it’s not cheating! But you’ll
learn the most if you try to solve the problem first.

We’ve also placed all the exercise solutions’ source code on the web so you can download
it. You’ll find it at http://www.headfirstlabs.com/books/hfcsharp/

The “Brain Power” exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises you will find hints to point you in the
right direction.

We use a lot of diagrams to
make tough concepts easier
to understand.

You should do ALL of the
“Sharpen your pencil” activities

Activities marked with the Exercise (running shoe) logo are really important! Don’t skip them if you’re serious about learning C#.

If you see the Pool Puzzle logo,
the activity is optional, and if
you don’t like twisty logic, you
won’t like these either.

 mi5Agent

 ciaAgent



http://www.headfirstlabs.com/books/hfcsharp/

xxxviii   intro

The technical review team

the review team

Lisa Kellner

Technical Reviewers:

When we wrote this book, it had a bunch of mistakes, issues, problems, typos, and terrible arithmetic errors. OK, it
wasn’t quite that bad. But we’re still really grateful for the work that our technical reviewers did for the book. We
would have gone to press with errors (including one or two big ones) had it not been for the most kick-ass review team
EVER.…

First of all, we really want to thank Chris Burrows and David Sterling for their enormous amount of technical
guidance. We also want to thank Lisa Kellner—this is our sixth book that she’s reviewed for us, and she made a huge
difference in the readability of the final product. Thanks, Lisa! And special thanks to Nick Paladino. Thanks!

Chris Burrows is a developer at Microsoft on the C# Compiler team who focused on design and implementation of
language features in C# 4.0, most notably dynamic.

David Sterling has worked on the Visual C# Compiler team for nearly 3 years.

Nicholas Paldino has been a Microsoft MVP for .NET/C# since the discipline’s inception in the MVP program and has
over 13 years of experience in the programming industry, specifically targeting Microsoft technologies.

Not pictured (but just
as awesome are the
reviewers from the first
edition): Joe Albahari,
Jay Hilyard, Aayam
Singh, Theodore, Peter
Ritchie,Bill Meitelski
Andy Parker, Wayne
Bradney, Dave Murdoch,
Bridgette Julie Landers.
And special thanks
to Jon Skeet for his
thorough review and
suggestions for the first
edition!

David Sterling
Nick Paladino

Chris Burrows

David really helped us out,
especially with some very
neat IDE tricks.

We’re especially
 grateful for

Chris’s insight
and almost

ridiculously he
lpful feedbac

k.

you are here 4   xxxix

the intro

Acknowledgments
Our editor:

We want to thank our editors, Brett McLaughlin and
Courtney Nash, for editing this book. Brett helped with a lot of
the narrative, and the comic idea in Chapter 14 was completely his,
and we think it turned out really well. Thanks!

Lou Barr

Brett McLaughlin

There are so many people at O’Reilly we want to thank that we hope we
don’t forget anyone. Special thanks to production editor Rachel Monaghan,
indexer Lucie Haskins, Emily Quill for her sharp proofread, Ron
Bilodeau for volunteering his time and preflighting expertise, and Sanders
Kleinfeld for offering one last sanity check—all of whom helped get this
book from production to press in record time. And as always, we love Mary
Treseler, and can’t wait to work with her again! And a big shout out to our
other friends and editors, Andy Oram and Mike Hendrickson. And if
you’re reading this book right now, then you can thank the greatest publicity
team in the industry: Marsee Henon, Sara Peyton, Mary Rotman,
Jessica Boyd, Kathryn Barrett, and the rest of the folks at Sebastopol.

Lou Barr is an amazing graphic designer who went above and beyond
on this one, putting in unbelievable hours and coming up with some pretty
amazing visuals. If you see anything in this book that looks fantastic, you can
thank her (and her mad InDesign skillz) for it. She did all of the monster and
alien graphics for the labs, and the entire comic book. Thanks so much, Lou!
You are our hero, and you’re awesome to work with.

Sanders Kleinfeld

The O’Reilly team:

Courtney Nash

xl   intro

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily search over 7,500
technology and creative reference books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read books on your cell
phone and mobile devices. Access new titles before they are available for print, and get exclusive access to manuscripts
in development and post feedback for the authors. Copy and paste code samples, organize your favorites, download
chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital access
to this book and others on similar topics from O’Reilly and other publishers, sign up for free at
http://my.safaribooksonline.com/?portal=oreilly.

safari books online

http://my.safaribooksonline.com/?portal=oreilly

this is a new chapter   1

Don’t worry, Mother. With Visual
Studio and C#, you’ll be able to
program so fast that you’ll never

burn the pot roast again.

get productive with c#1

Visual Applications, in 10
minutes or less

Want to build great programs really fast?�
With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to focus on getting your work done, rather than remembering which method

parameter was for the name of a button, and which one was for its label. Sound

appealing? Turn the page, and let’s get programming.

2   Chapter 1

Why you should learn C#
C# and the Visual Studio IDE make it easy for you to get to the business
of writing code, and writing it fast. When you’re working with C#, the
IDE is your best friend and constant companion.

c# makes it easy

What you get with Visual Studio and C#…
With a language like C#, tuned for Windows
programming, and the Visual Studio IDE, you can focus
on what your program is supposed to do immediately:

Here’s what the IDE automates for you…
Every time you want to get started writing a program, or
just putting a button on a form, your program needs a
whole bunch of repetitive code.

using System;

using System.C
ollections.Gen

eric;

using System.W
indows.Forms;

namespace A_Ne
w_Program

{
 static cla

ss Program

 {
 /// <s

ummary>

 /// Th
e main entry p

oint for the a
pplication.

 /// </
summary>

 [STATh
read]

 static
 void Main()

 {
 Ap

plication.Enab
leVisualStyles

();

 Ap
plication.SetC

ompatibleTextR
enderingDefaul

t(false);

 Ap
plication.Run(

new Form1());

 }
 }
}

private void InitializeComponent(){
 this.button1 = new System.Windows.Forms.Button();
 this.SuspendLayout(); //
 // button1 //
 this.button1.Location = new System.Drawing.Point(105, 56);
 this.button1.Name = “button1”; this.button1.Size = new System.Drawing.Size(75, 23);
 this.button1.TabIndex = 0; this.button1.Text = “button1”; this.button1.UseVisualStyleBackColor = true;
 this.button1.Click += new System.EventHandler(this.button1_Click);

 //
 // Form1
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(8F, 16F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(292, 267);
 this.Controls.Add(this.button1); this.Name = “Form1”; this.Text = “Form1”; this.ResumeLayout(false);}

It takes all this code just to draw a button on a form. Adding a few more visual elements to the form could take 10 times as much code.

Data access

C#, the .NET framework,
and the Visual Studio IDE
have pre-built structures
that handle the tedious
code that’s part of most
programming tasks.

.NET Framework
solutions

The result is a better looking application that takes less time to write.

Form Obje
ct

s

The IDE—or Visual Studio Integrated
Development Environment—is an
important part of working in C#. It’s
a program that helps you edit your
code, manage your files, and publish your
projects.

you are here 4   3

get productive with c#

 Build an application, FAST. Creating programs in C# is a snap. The
language is powerful and easy to learn, and the Visual Studio IDE does a lot
of work for you automatically. You can leave mundane coding tasks to the IDE
and focus on what your code should accomplish.

1

 Create and interact with databases. The IDE includes an easy-to-use
interface for building databases, and integrates seamlessly with SQL Server
Compact Edition and many other popular database systems.

3

 Design a great looking user interface. The Form Designer in the
Visual Studio IDE is one of the easiest design tools to use out there. It
does so much for you that you’ll find that making stunning user interfaces
is one of the most satisfying parts of developing a C# application. You can
build full-featured professional programs without having to spend hours
writing a graphical user interface entirely from scratch.

2

 Focus on solving your REAL problems. The IDE does a lot for you, but
you are still in control of what you build with C#. The IDE just lets you focus on
your program, your work (or fun!), and your customers. But the IDE handles all the
grunt work, such as:

≥≥ Keeping track of all your projects

≥≥ Making it easy to edit your project’s code

≥≥ Keeping track of your project’s graphics, audio, icons, and other resources

≥≥ Managing and interacting with databases

All this means you’ll have all the time you would’ve spent doing this routine
programming to put into building killer programs.

4

When you use C# and Visual Studio, you get all of
these great features, without having to do any extra
work. Together, they let you:

You’re going to see exactly
what we mean next.

C# and the Visual Studio IDE make
lots of things easy

4   Chapter 1

Name:

Company:

Telephone:

Email:

Client:		 Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustriescom

Yes 05/26/07

The Objectville Paper Company just hired a new CEO. He loves hiking,
coffee, and nature…and he’s decided that to help save forests, he wants
to become a paperless executive, starting with his contacts. He’s heading
to Aspen to go skiing for the weekend, and expects a new address book
program by the time he gets back. Otherwise…well…it won’t be just the
old CEO who’s looking for a job.

Help the CEO go paperless

the boss needs your help

You’d better find a way
to get this data onto the
CEO’s laptop quick.

you are here 4   5

get productive with c#

Windows installer

SQL
Database

The CEO wants to be able to run his
program on his desktop and laptop, so
an installer is a must.

We already know that Visual C#

makes working with databases

easy. Having contacts in a

database lets the C
EO and

the sales team all access the

information, even though t
here’s

only one copy of the
 data.

Get to know your users’ needs before
you start building your program
Before we can start writing the address book application—or any
application—we need to take a minute and think about who’s going to
be using it, and what they need from the application.

 The CEO needs to be able to run his address book program
at work and on his laptop, too. He’ll need an installer to
make sure that all of the right files get onto each machine.

1

 The Objectville Paper Company sales team wants to
access his address book, too. They can use his data to
build mailing lists and get client leads for more paper
sales.

The CEO figures a database would be the best way for
everyone in the company to see his data, and then he
can just keep up with one copy of all his contacts.

2

Think about your
users and their
needs before you
start building the
code, and they’ll
be happy with the
final product once
you’re done!

6   Chapter 1

here’s your goal

SELECT command

INSERT command

UPDATE command

DELETE command

PictureBox o
b

je
c

t

TableAdapte
r

o
b

je
ct

BindingSour
ce

 o
b

je
ct

.NET Visual Objects .NET Database
Objects

Database

diagram

Here’s what you’re going to build

You’ll be building
a Windows form with a

bunch of visual c
ontrols on it.

The application has a separate data layer that interacts with the database.

You’re going to need an application with a graphical user
interface, objects to talk to a database, the database itself, and
an installer. It sounds like a lot of work, but you’ll build all of
this over the next few pages.

Here’s the structure of the program we’re going to create:

Each of these objects
represents a control
on the address book
form we’ll create. We’ll need objects to talk to our tables, a diagram to let our application know what the database structure is, and more.

System.Window
s.

Fo
rm

 o
b

je
c

t

ToolBar o

bj
ec

t

data entry
 o

bj
ec

ts

DataSet o
bj

ec
t

BindingNavig
at

or
 o

b
je

ct

you are here 4   7

get productive with c#

SQL
Database

Table

Stored
Procedures

Data Storage Deployment Package

Windows installer

Database

.exe

Program
file

The data is all stored in a table in a SQL Server Compact database.
Once the program’s built,
it’ll be packaged up into a
Windows installer.

Here’s the database itself, which
Visual Studio will help us create
and maintain.

The sales
department will just need to point and click to install and then use his program.

8   Chapter 1

let’s get started

C#

Form1.Designer.cs

C#

Form1.cs

The code that
defines the form and its objects lives here.

This file contains the C#
code that defines the
behavior of the form.

What you do in Visual Studio…
Go ahead and start up Visual Studio, if you haven’t already. Skip over the start page and select New Project from
the File menu. Name your project “Contacts” and click OK. There are several project types to choose from. Select
Windows Forms Application and choose “Contacts” as the name for your new project by entering it in the

“Name” box at the bottom of the “New Project” window.

C#

Program.cs

This has the code
that starts up
the program and
displays the form.

What Visual Studio does for you…
As soon as you save the project, the IDE creates Form1.cs, Form1.
Designer.cs, and Program.cs file, when you create a new project. It
adds these to the Solution Explorer window, and by default, puts those files in
My Documents\Visual Studio 2010\Projects\Contacts\.

Visual Studio creates all three of
these files automatically.

	 Things may
look a bit
different in
your IDE.

This is what the “New
Project” window looks
like in Visual Studio 2010
Express Edition. If you’re
using the Professional or
Team Foundation edition, it
might be a bit different. But
don’t worry, everything still
works exactly the same.

Make sure that you save your project
as soon as you create it by selecting
“Save All” from the File menu—that’ll
save all of the project files out to
the folder. If you select “Save”, it
just saves the one you’re working on.

you are here 4   9

get productive with c#

Below is what your screen probably looks like right now. You should be able to figure out the
purpose of most of these windows and files based on what you already know. Make sure you open
the Toolbox and Error List windows by choosing them from the View >> Other Windows menu.
Then in each of the blanks, try and fill in an annotation saying what that part of the IDE does. We’ve
done one to get you started.

This toolbar has buttons that apply to what you’re currently doing in the IDE.

We’ve blown up this
window below so you
have more room.

If your IDE doesn’t look exactly like this
picture, you can select “Reset Window
Layout” from the Window menu.

If you don’t see the
Error List or Toolbox,
choose them from View
>> Other Windows.

10   Chapter 1

We’ve filled in the annotations about the different sections of the Visual
Studio C# IDE. You may have some different things written down, but you
should have been able to figure out the basics of what each window and
section of the IDE is used for.

This toolbar has buttons that apply to what you’re currently doing in the IDE.

know your ide

This window shows
properties of the
control currently
selected on your
form.

This is the
toolbox. It
has a bunch of
visual controls
that you can
drag onto your
form.

This Error List window shows

you when there are errors in

your code. This pane will show

lots of diagnostic info about

your program.

The Form1.cs and Program.cs files that the IDE created for you when you added the new project appear in the Solution Explorer.

You can switch between files using the Solution Explorer in the IDE.

See this little
pushpin icon?
If you click it,
you can turn
auto-hide on or
off. The Toolbox
window has
auto-hide turned
on by default.

you are here 4   11

get productive with c#

Q: So if the IDE writes all this code
for me, is learning C# just a matter of
learning how to use the IDE?

A: No. The IDE is great at automatically
generating some code for you, but it can
only do so much. There are some things it’s
really good at, like setting up good starting
points for you, and automatically changing
properties of controls on your forms. But
the hard part of programming—figuring out
what your program needs to do and making
it do it—is something that no IDE can do
for you. Even though the Visual Studio IDE
is one of the most advanced development
environments out there, it can only go so far.
It’s you—not the IDE—who writes the code
that actually does the work.

Q: I created a new project in Visual
Studio, but when I went into the “Projects”
folder under My Documents, I didn’t see it
there. What gives?

A: When you first create a new project in
Visual Studio 2010 Express, the IDE creates
the project in your Local Settings\
Application Data\Temporary
Projects folder. When you save the
project for the first time, it will prompt you
for a new filename, and save it in the My
Documents\Visual Studio
2010\Projects folder. If you try to
open a new project or close the temporary
one, you’ll be prompted to either save or
discard the temporary project. (NOTE: The
other, non-Express versions of Visual Studio
do not use a temporary projects folder. They
create the project directly in Projects!)

Q: What if the IDE creates code I don’t
want in my project?

A: You can change it. The IDE is set up to
create code based on the way the element
you dragged or added is most commonly	
	

	
used. But sometimes that’s not exactly what
you wanted. Everything the IDE does for
you—every line of code it creates, every file
it adds—can be changed, either manually by
editing the files directly or through an easy-
to-use interface in the IDE.

Q: Is it OK that I downloaded and
installed Visual Studio Express? Or do
I need to use one of the versions of
Visual Studio that isn’t free in order to do
everything in this book?

A: There’s nothing in this book that you
can’t do with the free version of Visual Studio
(which you can download from Microsoft’s
website). The main differences between
Express and the other editions (Professional
and Team Foundation) aren’t going to get
in the way of writing C# and creating fully
functional, complete applications.

Q: Can I change the names of the files
the IDE generates for me?

A: Absolutely. When you create a new
project, the IDE gives you a default form called
Form1 (which has files called Form1.cs,
Form1.Designer.cs, and Form1.
resx). But you can use the Solution
Explorer to change the names of the files to
whatever you want. By default, the names of
the files are the same as the name of the form.
If you change the names of the files, you’ll
be able to see in the Properties window that
the form will still be called Form1. You can
change the name of the form by changing the
“(Name)” line in the Properties window. If you
do, the filenames won’t change.	
	
C# doesn’t care what names you choose for
your files or your forms (or any other part of
the program), although there are a few rules
for this. But if you choose good names, it
makes your programs easier to work with.
For now, don’t worry about names—we’ll talk
a lot more about how to choose good names
for parts of your program later on.

Q: I’m looking at the IDE right now,
but my screen doesn’t look like yours! It’s
missing some of the windows, and others
are in the wrong place. What gives?

A: If you click on the “Reset Window
Layout” command under the “Window” menu,
the IDE will restore the default window layout
for you. Then you can use the “View >>
Other Windows” menu to make your screen
look just like the ones in this chapter.

Visual Studio will
generate code
you can use as a
starting point for
your applications.

Making sure
the application
does what it’s
supposed to do
is entirely up to
you.

12   Chapter 1

Adding controls and polishing the user interface is as easy as
dragging and dropping with the Visual Studio IDE. Let’s add a
logo to the form:

Develop the user interface

a picturebox is worth a thousand words

 Use the PictureBox control to add a picture.
Click on the PictureBox control in the Toolbox, and drag it
onto your form. In the background, the IDE added code to
Form1.Designer.cs for a new picture control.

1

C#

Form1.Designer.cs

Every time you make a change to a control’s properties on the form, the code in Form1.Designer.cs is getting changed by the IDE.

If you don’t see
the toolbox, try
hovering over the
word “Toolbox”
that shows up
in the upper
left-hand corner
of the IDE. If it’s
not there, select

“Toolbox” from
the View menu to
make it appear.

		� It’s OK if you’re not a pro at user
interface design.

We’ll talk a lot more about designing
good user interfaces later on. For now,

just get the logo and other controls on your form, and
worry about behavior. We’ll add some style later.

you are here 4   13

get productive with c#

You are Here

 Set the PictureBox to Zoom mode.
Every control on your form has properties that you can
set. Click the little black arrow for a control to access
these properties. Change the PictureBox’s Size property
to “Zoom” to see how this works:

2

Click on this little
black arrow to access
a control’s properti

es.

Choose “Zoom” so that the PictureBox frame will change to match the size of the picture you put in it.

 Download the Objectville Paper Company logo.
Download the Objectville Paper Co. logo from Head First Labs (http://
www.headfirstlabs.com/books/hfcsharp) and save it to your hard drive.
Then click the PictureBox properties arrow, and select Choose Image. You’ll see a
Select Resources window pop up. Click the “Local Resource” radio button to enable the

“Import…” button at the top of the form. Click that button, find your logo, and you’re all set.

3

Here’s the OPC logo,
and the PictureBox
zooms to get the size

just right.

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

You can also use the
“Properties” window in
the IDE to set the
Size property. The
little black arrow is
just there to make
it easy to access
the most common
properties of any
control.

Then click “Choose Image” to bring up the Select Resource dialog box so you can import a local resource.

Stored

Procedures

http://www.headfirstlabs.com/books/hfcsharp
http://www.headfirstlabs.com/books/hfcsharp

14   Chapter 1

Every time you do something in the Visual Studio IDE, the IDE is
writing code for you. When you created the logo and told Visual
Studio to use the image you downloaded, Visual Studio created a resource
and associated it with your application. A resource is any graphics file,
audio file, icon, or other kind of data file that gets bundled with your
application. The graphics file gets integrated into the program, so that
when it’s installed on another computer, the graphic is installed along with
it and the PictureBox can use it.

When you dragged the PictureBox control onto your form, the IDE
automatically created a resource file called Form1.resx to store that
resource and keep it in the project. Double-click on this file, and you’ll be
able to see the newly imported image.

Visual Studio, behind the scenes

This image is now a resource of the
Contact List application.

C#

Form1.Designer.csC#

Form1.cs C#

Program.cs

C#

Form1.resx

Here are the file
s

Visual Studio
created earlier.

conserving c#’s natural resources

When you imported the image, the
IDE created this file for you.
It contains all of the resources
(graphics, video, audio and other
stored data) associated with Form1.

Go to the Solution Explorer and click on the “expand” icon next
to Form1.cs to expand it (if it’s not already expanded). This
will display two files: Form1.Designer.cs and Form1.
resx. Double-click on Form1.resx, click on the arrow next
to “Strings”, and select “Images” from the drop-down list (or hit
Ctrl-2) to see the logo that you imported. That file is what links it
to the PictureBox, and the IDE added code to do the linking.

If you chose the other
“Import.” button from
the Select Resource
dialog on the last page,
then your image will
show up in the Resources
folder in the Solution
Explorer instead. Don’t
worry—just go back to
Select Resources, choose
“Local Resource,” and
reimport the image into
the resources, and it’ll
show up here.

you are here 4   15

get productive with c#

Add to the auto-generated code
The IDE creates lots of code for you, but you’ll still want to get
into this code and add to it. Let’s set the logo up to show an About
message when the users run the program and click on the logo.

When you’re editing a form in the IDE, double-clicking on any of
the toolbox controls causes the IDE to automatically add code to
your project. Make sure you’ve got the form showing in the IDE,
and then double-click on the PictureBox control. The IDE will
add code to your project that gets run any time a user clicks on the
PictureBox. You should see some code pop up that looks like this:

public partial class Form1 : Form
{

 public Form1()
 {

 InitializeComponent();

 }

 private void pictureBox1_Click(object sender, EventArgs e)

 {

 MessageBox.Show(“Contact List 1.0.\nWritten by: Your Name”, “About”);

 }
}

When you double-clicked on the PictureBox control,
the IDE created this method. It will run every time
a user clicks on the logo in the running application.

When you double-click on the
PictureBox, it will open this
code up with a cursor blinking
right here. Ignore any windows
the IDE pops up as you type;
it’s trying to help you, but we
don’t need that right now.

Type in this line of code. It causes a message box to pop up with the text you provide. The box will be titled “About”.

Q: What’s a method?

A: A method is just a named block of code.
We’ll talk a lot more about methods in Chapter 2.

Q: What does that \n thing do?

A: That’s a line break. It tells C# to put
“Contact List 1.0.” on one line, and then start a
new line for “Written by:”.

This method name gives you a
good idea about when it runs:
when someone clicks on this
PictureBox control.

Once you’ve typed in the line
of code, save it using the Save
icon on the IDE toolbar or
by selecting “Save” from the
File menu. Get in the habit of
doing “Save All” regularly!

16   Chapter 1

run the app (already!)

Press the F5 key on your keyboard, or click the green
arrow button () on the toolbar to check out what you’ve
done so far. (This is called “debugging,” which just means
running your program using the IDE.) You can stop
debugging by selecting “Stop Debugging” from the Debug
menu or clicking this toolbar button: .

You can already run your applicat ion

Clicking on the
OPC logo brings up
the About box you
just coded.

All three of these buttons work—and you didn’t have to write any code to make them work.

Q: In my IDE, the green arrow is marked as
“Debug.” Is that a problem?

A: No. Debugging, at least for our purposes
right now, just means running your application
inside the IDE. We’ll talk a lot more about
debugging later, but for now, you can simply think
about it as a way to run your program.

Q: I don’t see the Stop Debugging button
on my toolbar. What gives?

A: The Stop Debugging button shows up in a
special toolbar that only shows up when your
program is running. Try starting the application
again, and see if it appears.

When you run your program, Visual Studio copies
your files to My Documents\Visual Studio
2010\Projects\Contacts\Contacts\
bin\debug. You can even hop over to that
directory and run your program by double-clicking
on the .exe file the IDE creates.

Where are my f iles?

C#

Form1.
Designer.cs

C#

Form1.resx

C#

Form1.cs

C#

Program.cs

C#

bin

Properties

Contacts.csproj

This isn’t a mistake; there are two levels of folders. The inner folder has the actual C# code files.

C# turns your
program into a
file that you can
run, called an
executable. You’ll
find it in here, in
the debug folder.

you are here 4   17

get productive with c#

We’ve built a form and created a PictureBox object that pops up a
message box when it’s clicked on. Next, we need to add all the other
fields from the card, like the contact’s name and phone number.

Let’s store that information in a database. Visual Studio can connect
fields directly to that database for us, which means we don’t have to
mess with lots of database access code (which is good). But for that
to work, we need to create our database so that the controls on the
form can hook up to it. So we’re going to jump from the .NET Visual
Objects straight to the Data Storage section.

Here’s what we’ve done so far

SQL
Database

Visual Studio can generate code to connect your
form to a database, but you need to have the
database in place BEFORE generating that code.

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Here’s what we’ve already done… …but we still need some
objects to interact
with the data we’ll put

in our database.

This step is about connecting our form to the database, so we’re not ready for it yet, since we don’t have a database.

So we need to focus
on this step next:
creating our database,
and putting some
initial data into it.

Stored

Procedures

18   Chapter 1

	 If you’re not using
the Express edition,
you’ll see “Server
Explorer” instead of
“Database Explorer.”

The Visual Studio 2010 Professional
and Team Foundation editions don’t
have a Database Explorer window.
Instead, they have a Server Explorer
window, which does everything the
Database Explorer does, but also lets
you explore data on your network.

Before we add the rest of the fields to the form, we need
to create a database to hook the form up to. The IDE
can create lots of the code for connecting our form to
our data, but we need to define the database itself first.

Make sure you’ve stopped debugging before you continue.

We need a database to store our information

 Add a new SQL database to your project.
In the Solution Explorer, right-click the Contacts project,
select Add, and then choose New Item. Choose the SQL
Database icon, and name it ContactDB.sdf.

1

 Cancel the Data Source Configuration Wizard.
For now, we want to skip configuring a data source, so
click the Cancel button. We’ll come back to this once
we’ve set up our database structure.

3

A Local Database is
actually a SQL Server
Compact Edition
database file, which
typically has the
extension SDF. It gives
you an easy way to
embed a database into
your program.

 View your database in the Solution Explorer.
Go to the Solution Explorer, and you’ll see that
ContactDB has been added to the file list. Double-click
ContactDB.sdf in the Solution Explorer and look at the
left side of your screen. The Toolbox has changed to a
Database Explorer.

4

save it for later

SQL

ContactDB.sdf

This file is our
new database.

Choose Local
Database
to create a
SQL Server
Compact
Edition file,
which will hold
your entire
database.
Name your file
ContactDB.sdf.

 Click on the Add button in the Add New Item
window.

2

you are here 4   19

get productive with c#

SQL

ContactDB.sdf

The SQL database is in this file.
We’re just about to define tables
and data for it, and all of that
will be stored in here too.

When you told the IDE to add a new SQL database to
your project, the IDE created a new database for you. A
SQL database is a system that stores data for you in an
organized, interrelated way. The IDE gives you all the
tools you need to maintain your data and databases.

Data in a SQL database lives in tables. For now, you
can think of a table like a spreadsheet. It organizes your
information into columns and rows. The columns are the
data categories, like a contact’s name and phone number,
and each row is the data for one contact card.

The IDE created a database

Tables Stored Procedures

SQL
Database

SQL stands for Structured Query Language.
It’s a programming language for accessing data in
databases. It’s got its own syntax, keywords, and
structure. SQL code takes the form of statements
and queries, which access and retrieve the data.
A SQL database can hold stored procedures,
which are a bunch of SQL statements and queries
that are stored in the database and can be run at
any time. The IDE generates SQL statements and
stored procedures for you automatically to let your
program access the data in the database.

SQL is its own language

A SQL database stores your data, and has information about how it’s structured and SQL code to help you access it.
Your data’s stored in a
table with columns and
rows, like in a spreadsheet.

[note from marketing: Can we get a plug
for Head First SQL in here?]

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Stored

Procedures

20   Chapter 1

data storage made easy

Creat ing the table for the Contact List
We have a database, and now we need to store information
in it. But our information actually has to go into a table,
the data structure that databases use to hold individual bits
of data. For our application, let’s create a table called

“People” to store all the contact information:

 Add a table to the ContactDB database.
Right-click on Tables in the Database Explorer, and select
Create Table. This will open up a window where you can
define the columns in the table you just created.

1

Now we need to add columns to our table. First, let’s add a
column called ContactID to our new People table, so that
each Contact record has its own unique ID.

 Add a ContactID column to the People table.
Type “ContactID” in the Column Name field, and
select Int from the Data Type drop-down box. Be sure
to select “No” for Allow Nulls.

Finally, let’s make this the primary key of our table.
Highlight the ContactID column you just created, and
click the Primary Key button. This tells the database
that each entry will have a unique primary key entry.

2

Add a new column called “ContactID” with data type “int”. Make sure to
set “Allow Nulls” to No, “Unique” to Yes, and Primary Key to “Yes.”

Q: What’s a column again?

A: A column is one field of a table. So in a
People table, you might have a FirstName and
LastName column. It will always have a data
type, too, like String or Date or Bool.

Q: Why do we need this ContactID
column?

A: It helps to have a unique ID for each
record in most database tables. Since we’re
storing contact information for individual
people, we decided to create a column for that,
and call it ContactID.

Q: What’s that Int from Data Type mean?

A: The data type tells the database what
type of information to expect for a column.
Int stands for integer, which is just a whole
number. So the ContactID column will have
whole numbers in it.

Q: This is a lot of stuff. Should I be
getting all of this?

A: No, it’s OK if you don’t understand
everything right now. Your goal right now
should be to start to get familiar with the basics
of using the Visual Studio IDE to lay out your
form and run your program. (If you’re dying to
know more about databases, you can always
pick up Head First SQL.)

you are here 4   21

get productive with c#

This will make it so that the ContactID field updates automatically whenever a new record is added.

A primary key helps
your database look
up records quickly.
Since the primary
key is the main way
your program will
locate records, it
always needs to
have a value.

 Tell the database to autogenerate IDs.
Since ContactID is a number for the database, and not
our users, we can tell our database to handle creating and
assigning IDs for us automatically. That way, we don’t have
to worry about writing any code to do this.

In the properties below your table, set Identity to “True” to
make ContactID an identity column for your table.

And make sure you specify the table name “People” in the
Name box at the top of the window.

3

This window is what you use
to define your table and
the data it will store.

You’ll need to click on the right column and
select “True” from the drop-down next to
Identity to designate ContactID as your
table’s record Identifier.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Stored

Procedures

22   Chapter 1

let’s table this discussion

The blanks on the contact card
are columns in our People table
Now that you’ve created a primary key for the table, you need
to define all of the fields you’re going to track in the database.
Each field on our written contact card should become a
column in the People table.

Each blank on the card should map to a column in the people table.

People

For each person, we want to store data: her name, company, phone number, email address, if she’s an OPC client, and the date of the last time she was called.

What kinds of problems could result from having
multiple rows stored for the same person?

Name:

Company:

Telephone:

Email:

Client:		 Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustries.com

Yes 05/26/07

mailto:Laverne.Smith@XyZindustries.com

you are here 4   23

get productive with c#

Now that you’ve created a People table and a primary key column, you need to add columns for all of the data
fields. See if you can work out which data type goes with each of the columns in your table, and also match the
data type to the right description.

Last Call

Name

ContactID

Client?

int

bit

nvarchar(100)

datetime

Column Name

This type stores a date
and time

A Boolean true/false type

A string of letters,
numbers, and other
characters with a
maximum length of 100

A whole number

DescriptionData Type

24   Chapter 1

it’s just my type

Now that you’ve created a People table and a primary key column, you need to add columns for all of the data
fields. See if you can work out which data type goes with each of the columns in your table, and also match the
data type to the right description.

Last Call

Name

ContactID

Client?

int

bit

nvarchar(100)

datetime

Column Name

This type stores a date
and time

A Boolean true/false type

A string of letters,
numbers, and other
characters with a
maximum length of 100

A whole number

DescriptionData Type

you are here 4   25

get productive with c#

If you set Allow
Nulls to No, the
column must
have a value.

Click on the OK button to save your new table. This will add an empty table to your database.
(If you clicked OK earlier, you can open the Edit Table window again by right-clicking on the
table in the Database Explorer and choosing “Edit Table Schema” from the menu.)

Bit fields
hold True or
False values
and can be
represented
as a checkbox.

Finish building the table
Go back to where you entered the ContactID column
and add the other five columns from the contact card.
Here’s what your database table should look like
when you’re done:

Some cards might have some missing information, so we’ll let certain columns be blank.

Once you click OK,
Visual Studio adds a
new People table to
the database.

ContactDB

People

This new table is empty, but it’s ready for you to add data!

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Stored

Procedures

26   Chapter 1

Now you’re ready to start entering cards into the database.
Here are some of the boss’s contacts—we’ll use those to
set up the database with a few records.

adding your data

Type “True” or “F
alse”

in the Client colu
mn.

That’ll get
 translate

d

to the way SQL stores

yes or no
info.

Once you see the Table grid in the
main window, go ahead and add all
of the data below. (You’ll see all null
values at first—just type over them
when you add your first row. And
ignore the exclamation points that
appear next to the data.) You don’t
need to fill in the ContactID column;
that happens automatically.

2

Expand Tables and then right-click
on the People table in the Database
Explorer (or Server Explorer) and
select Show Table Data.

1

Insert your card data into the database

Your job is to enter
the data from all six
of these cards into
the People table.

Name:

Company:

Telephone:

Email:

Client:		 Last call:

Liz Nelson

JTP

(419)555-2578

LizNelson@JTP.ORg

Yes
03/04/09

Name:

Company:

Telephone:

Email:

Client:		 Last call:

Lucinda Ericson

Ericson Events

(212)555-9523
Lucy@EricsonEvents.info

No 05/17/10

Name:

Company:

Telephone:

Email:

Client:		 Last call:

Lloyd Jones

Black Box inc.

(718)555-5638

LJones@Xblackboxinc.com

Yes 05/26/10

mailto:LizNelson@JTP.ORg
mailto:LizNelson@JTP.ORg
mailto:Lucy@EricsonEvents.info
mailto:LJones@Xblackboxinc.com

you are here 4   27

get productive with c#

Name:

Company:

Telephone:

Email:

Client:		 Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustries.com

Yes 04/11/10

“Save All” tells the IDE to save
everything in your application.
That’s different from “Save”, which
just saves the file you’re working on.

Once you’ve entered all six records,
select Save All from the File menu
again. That should save the records
to the database.

3

Q: So what happened to the data after I entered it? Where
did it go?

A: The IDE automatically stored the data you entered into the
People table in your database. The table, its columns, the data
types, and all of the data inside it is all stored in the SQL Server
Compact database file, ContactDB.sdf. That file is stored as part
of your project, and the IDE updates it just like it updates your
code files when you change them.

Q: OK, I entered these six records. Will they be part of
my program forever?

A: Yes, they’re as much a part of the program as the code
that you write and the form that you’re building. The difference is
that instead of being compiled into an executable program, the
ContactDB.sdf file is copied and stored along with the executable.
When your application needs to access data, it reads and writes
to ContactDB.sdf, in the program’s output directory.

SQL

ContactDB.sdf

This file is actually a SQL database, and your program can use it with the code the IDE generated for you.

Name:

Company:

Telephone:

Email:

Client:		 Last call:

Sarah Kalter
 Kalter, Riddle and Stoft

(614)555-5641
Sarah@KRS.org

no 12/10/08

Name:

Company:
Telephone:

Email:

Client:		 Last call:

Matt Franks

 XYZ Industries

(212)555-8125
Matt.Franks@XyZindustries.com

Yes 05/26/10

Objectville Paper Company is in the
United States, so the CEO writes
dates so that 05/26/10 means May
26, 2010. If your machine is set to
a different location, you may need to
enter dates differently; you might
need to use 26/05/10 instead.

mailto:Sarah@KRS.org
mailto:Laverne.Smith@XyZindustries.com
mailto:Matt.Franks@XyZindustries.com
mailto:Matt.Franks@XyZindustries.com

28   Chapter 1

We’re finally ready to build the .NET database objects that our
form will use to talk to your database. We need a data source,
which is really just a collection of SQL statements your program
will use to talk to the ContactDB database. Once you’re done entering data, close the data entry window to get back to your form.

the data’s all in there

The data source you’re creating will handle all the interactions between your form and your database.

Connect your form to your database
objects with a data source

 Go back to your application’s form.
Close out the People table and the ContactDB database
diagram. You should now have the Form1.cs [Design] tab visible.

1

 Add a new data source to your application.
This should be easy by now. Click the Data menu, and then
select Add New Data Source…from the drop-down.

2

you are here 4   29

get productive with c#

C#

ContactDBDataSet.
Designer.cs

XML

ContactDBDataSet.xsd

These steps connect your new data source with the People table in the ContactDB database.

SQL

ContactDB.sdf

These files are what’s
generated by the data
source you just set up.

Here’s your existing form.

This file is your database.

Now your form can use the data
source to interact with the
ContactDB database.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

 Configure your new data source.
Now you need to set up your data source to use the ContactDB
database. Here’s what to do:

≥≥ Step 1: Choose a Data Source Type. Select Database
and click the Next button.

≥≥ Step 2: Choose a Database Model. Select Dataset and
click the Next button.

≥≥ Step 3: Choose Your Data Connection. You should see
your Contact database in the drop-down. Click Next.

≥≥ Step 4: Choose Your Database Objects. Click the
Tables checkbox.

≥≥ In the Dataset Name field, make sure it says
“ContactDBDataSet” and click Finish.

3

Stored

Procedures

In the non-Express editions, you may be asked to save the connection in the app config. Answer “Yes.”

30   Chapter 1

All of the columns
you created should
show up here.

Click this arrow and choose Details to

tell the IDE to add individual controls

to your form rather than one large

spreadsheet-like data control.

Now we can go back to our form and add some more controls. But these
aren’t just any controls—they are controls that are bound to our database
and the columns in the People table. That just means that a change to
the data in one of the controls on the form automatically changes the
data in the matching column in the database.

Here’s how to create several database-driven controls:

Add database-dri ven controls to your form

bind it all together

It took a little work, but now we’re back to creating form objects that interact with our data storage.

 Select the data source you want to use.
Select Show Data Sources from the Data pull-down menu. This
will bring up the Data Sources window, showing the sources you
have set up for your application.

1

This window shows you all your data sources. We’ve only got one setup, but you could have more for different tables or databases.

You can also
look for, and
click on, the
Data Sources
tab along the
bottom of your
Database
Explorer window.

 Select the People table.
Under the ContactDBDataSet, you should see the People table and all of the columns in it.
Click the “expand” icon next to the People table to expand it—you’ll see the columns that you
added to your table. When you click on the People table in the Data Sources window and drag
it onto your form, the IDE automatically adds data controls to your form that the user can use
to browse and enter data. By default it adds a DataGridView, which lets the user work with the
data using one big spreadsheet-like control. Click the arrow next to the People table and select
Details—that tells the IDE to add individual controls to your form for each column in the table.

2

If you don’t see this tab,
select Show Data Sources
from the Data menu.

You’ll only see this drop-down if you’ve

got a form designer window open in the

IDE. It lets you drag data contr
ols

directly out of your data so
urce and

onto your form.

you are here 4   31

get productive with c#

When you
dragged the
People table
onto the form,
a control was
created for
each column in
the table.

These won’t
show up on
your form, but
represent the
code that the
IDE created to
interact with
the People table
and ContactDB
database.

The IDE
creates this
toolbar for
navigating
through the
People table.

This object connects the form to your People table.

This adapter allows your
controls to interact
with SQL commands
that the IDE and data
source generated for you.

The binding navigator connects the toolbar controls to your table.

 Create controls that bind to the People table.
Drag and drop the People table onto your form in the form
designer window. You should see controls appear for each
column in your database. Don’t worry too much about how they
look right now; just make sure that they all appear on the form.

3

If you accidentally click out of the form you’re working on, you
can always get back to it by clicking the “Form1.cs [Design]”
tab, or opening Form1.cs from the Solution Explorer.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Stored

Procedures

32   Chapter 1

Right now, the form works. But it doesn’t look that great. Your
application has to do more than be functional. It should be
easy to use. With just a few simple steps, you can make the
form look a lot more like the paper cards we were using at the
beginning of the chapter.

make it pretty

Blue lines will show
up on the form as
you drag controls
around. They’re
there to help you
line the fields up.

Good programs are intuit i ve to use

Our form would
be more intuitive
if it looked
a lot like the
contact card.

Line up your fields and labels.
Line up your fields and labels along the left edge of
the form. Your form will look like other applications,
and make your users feel more comfortable using it.

1

Change the Text Property on the Client checkbox.
When you first drag the fields onto the form, your Client
checkbox will have a label to the right that needs to be deleted.
Right below the Solution Explorer, you’ll see the Properties
window. Scroll down to the Text property and delete the

“checkbox1” label.

2

Delete this word to make
the label go away.

Name:

Company:

Telephone:

Email:

Client:		 Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustriescom

Yes 05/26/07

you are here 4   33

get productive with c#

The Text property controls the heading on your form’s title bar.

Make the application look professional.
You can change the name of the form by clicking on any empty
space within the form, and finding the Text property in the
Properties window of your IDE. Change the name of the form
to Objectville Paper Company Contact List.

You can also turn off the Maximize and Minimize buttons
in this same window, by looking for the MaximizeBox and
MinimizeBox properties. Set these both to False.

3

The Properties window

should be right be
low

Solution Explorer, in

the lower right pane of

your IDE.

A good application not only works, but is easy
to use. It’s always a good idea to make sure it
behaves as a typical user would expect it to.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

The reason you want to turn off the Maximize button is that maximizing your form won’t change the positions of the controls, so it’ll look weird.

If you don’t have a Properties window, you can turn
it on by selecting it from the View drop-down menu.

Stored

Procedures

34   Chapter 1

OK, just one more thing to do… run your program and make sure
it works the way you think it should! Do it the same way you did
before—press the F5 key on your keyboard, or click the green arrow
button on the toolbar (or choose “Run” from the Debug menu).

You can always run your programs at any time, even when they’re not
done—although if there’s an error in the code, the IDE will tell you
and stop you from executing it.

Click the X box in the corner to stop the program so you can move on to the next step.

The IDE builds f irst, then runs
When you run your program in the IDE it actually does two things. First it
builds your program, then it executes it. This involves a few distinct parts.
It compiles the code, or turns it into an executable file. Then it places the
compiled code, along with any resources and other files, into a subdirectory
underneath the bin folder.

In this case, you’ll find the executable and SQL database file in bin/
debug. Since it copies the database out each time, any changes you
make will be lost the next time you run inside the IDE. But if you run the
executable from Windows, it’ll save your data—until you build again, at
which point the IDE will overwrite the SQL database with a new copy that
contains the data you set up from inside the Database Explorer.

ok, one last thing…

Test dri ve

Building your
program
overwrites
the data in
your database.

These controls
let you page
through the
different records
in the database.

We’ll spend more time
on this in the next
chapter.

	 Every time you
build your
program, the
IDE puts a
fresh copy of
the database
in the bin

folder. This will overwrite
any data you added when
you ran the program.

When you debug your program,
the IDE rebuilds it if the
code has changed—which
means that your database will
sometimes get overwritten
when you run your program in
the IDE. If you run the program
directly from the bin/debug or
bin/release folder, or if you
use the installer to install it on
your machine, then you won’t
see this problem.

you are here 4   35

get productive with c#

At this point, you’ve got a great program. But it only runs
on your machine. That means that nobody else can use the
app, pay you for it, see how great you are and hire you…
and your boss and customers can’t see the reports you’re
generating from the database.

C# makes it easy to take an application you’ve created, and
deploy it. Deployment is taking an application and installing
it onto other machines. And with the Visual C# IDE, you
can set up a deployment with just two steps.

How to turn YOUR applicat ion
into EVERYONE’S applicat ion

1 Select Publish Contacts from
the Project menu.

Building the solution just copies the files to your
local machine. Publish
creates a Setup executable and a configuration file
so that any machine could install your program.

2 Just accept all of the defaults in
the Publish Wizard by clicking
Finish. You’ll see it package up
your application and then show
you a folder that has your Setup.
exe in it.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Stored

Procedures

If you’re using Visual Studio Express, you’ll find “Publish” in the Project menu, but in other editions it may be in the Build menu.

36   Chapter 1

This is how your users will install the program on their computers!

This file tells the insta
ller

everything that needs

to be included when the

program is installed.

This is where all of the

supporting files for t
he

installer are stored.

Once you’ve created a deployment, you’ll have a new folder
called publish/. That folder has several things in it, all
used for installation. The most important for your users is
setup, a program that will let them install your program on
their own computers.

Give your users the applicat ion

My secretary just told me that you’ve
got the new contact database working
already. Pack your bags—we’ve got room on
the jet to Aspen for a go-getter like you!

Sounds like the boss is pleased. G
ood job!

There’s just one more thing to do before

you can jet off to the slopes, th
ough…

share the love

	 You may
need to
run the
installer as

administrator.

If SQL Server
Compact isn’t already
installed on the
machine, the installer
will automatically
download and install
it. On some machines,
this won’t work unless
you run the setup
as administrator, so
right-click on “setup”
and choose “Run
as administrator” to
install it. If you don’t
have access to do
that, don’t worry! You
don’t need to in order
to move forward in the
book.

you are here 4   37

get productive with c#

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

The contacts you entered are all
there. They’re part of the ContactDB.sdf database file, which gets installed along with your program.

You can use the
arrows and the
text field to switch between records.

Go ahead…make
some changes.
You’ve deployed
it so this time,
they’ll stick.

You’re NOT done: test
your installat ion
Before you pop the cork on any champagne bottles, you need
to test your deployment and installation. You wouldn’t give
anyone your program without running it first, would you?

Close the Visual Studio IDE. Click the setup program,
and select a location on your own computer to install the
program. Now run it from there, and make sure it works like
you expect. You can add and change records, too, and they’ll
be saved to the database. Now you can make changes to the data, and they’ll get saved to the database.

TEST EVERYTHING!
Test your program, test
your deployment, test the
data in your application.

Stored

Procedures

38   Chapter 1

From this

You’ve built a complete
data-dri ven applicat ion
The Visual Studio IDE made it pretty easy to create
a Windows application, create and design a database,
and hook the two together. You even were able to
build an installer with a few extra clicks.

to this

in no time flat.

The power of Visual C# is that you can quickly
get up and running, and then focus on what
your program’s supposed to do…not lots of
windows, buttons, and SQL access code.

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Name:

Company:

Telephone:

Email:

Client:		 Last call:

Lloyd Jones

Black Box inc.

(718)555-5638

LJones@Xblackboxinc.com

Yes 05/26/07

super fast!

Stored

Procedures

mailto:LJones@Xblackboxinc.com

you are here 4   39

get productive with c#

CSharpcross
Take some time to sit back and exercise your C# vocabulary with
this crossword; all of the solution words are from this chapter.

1 2 3

4 5

6 7

8

9 10 11

12 13

14

15

16

Across
3. The __________ explorer is where you edit the
contents of your SQL tables and bind them to
your program
5. An image, sound, icon, or file that's attached to
your project in a way that your code can access
easily
9. You build one of these so you can deploy your
program to another computer
12. What the "I" in IDE stands for
14. When you double-clicked on a control, the
IDE created this for you and you added code to it
15. Every row contains several of these, and all of
them can have different data types
16. The _________ Explorer shows you all of the
files in your project

Down
1. What's happening when code is turned into an
executable
2. What you change to alter the appearance or
behavior of controls on your form
3. What you're doing when you run your program
from inside the IDE
4. The "About" box in the Objectville Paper
Company Contact List program was one of these
6. You displayed the Objectville Paper Company
logo with one of these
7. Before you start building a program, you
should always think about users and their ______
8. A database can use many of these to store
data
10. The data type in a SQL database that you use
to store true/false values
11. Before you can run your program, the IDE
does this to create the executable and move files
to the output directory
13. You drag controls out of this and onto your
form

40   Chapter 1

crossword solution

CSharpcross Solution

C1 P2 D3 A T A B A S E
O M4 R5 E S O U R C E
M E O B P6 N7

P S T8 P U I E
I9 N S T A L L E R B10 G C E B11

L A B R I12 N T13 E G R A T E D U
E G L T T O I U S I

E E I O N R L
B E L G M14 E T H O D

C15 O L U M N S B B
X S16 O L U T I O N

X X

Across
3. The __________ explorer is where you edit the
contents of your SQL tables and bind them to
your program [database]
5. An image, sound, icon, or file that's attached to
your project in a way that your code can access
easily [resource]
9. You build one of these so you can deploy your
program to another computer [installer]
12. What the "I" in IDE stands for [integrated]
14. When you double-clicked on a control, the
IDE created this for you and you added code to it
[method]
15. Every row contains several of these, and all of
them can have different data types [columns]
16. The _________ Explorer shows you all of the
files in your project [solution]

Down
1. What's happening when code is turned into an
executable [compile]
2. What you change to alter the appearance or
behavior of controls on your form [properties]
3. What you're doing when you run your program
from inside the IDE [debugging]
4. The "About" box in the Objectville Paper
Company Contact List program was one of these
[messagebox]
6. You displayed the Objectville Paper Company
logo with one of these [picturebox]
7. Before you start building a program, you
should always think about users and their ______
[needs]
8. A database can use many of these to store
data [table]
10. The data type in a SQL database that you use
to store true/false values [bit]
11. Before you can run your program, the IDE
does this to create the executable and move files
to the output directory [build]
13. You drag controls out of this and onto your
form [toolbox]

this is a new chapter   41

it’s all just code2

Under the hood

You’re a programmer, not just an IDE user.�
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

One of these days
I’ll figure out what’s
going on under there…

42   Chapter 2

When you’re doing this…
The IDE is a powerful tool—but that’s all it is, a tool for you to use. Every time
you change your project or drag and drop something in the IDE, it creates code
automatically. It’s really good at writing boilerplate code, or code that can be
reused easily without requiring much customization.

Let’s look at what the IDE does in typical application development, when you’re…

The Properties window in the IDE is a really easy way to edit a specific chunk of code in Form1.Designer.cs automatically. It would take a lot longer to do it by hand. Use the F4 shortcut to open the Properties window if it’s closed.

at your service

Creating a Windows Forms Application project
There are several kinds of applications the IDE lets you
build, but we’ll be concentrating on Windows Forms
applications for now. Those are programs that have
visual elements, like forms and buttons.

1

Dragging a button out of the toolbox and
onto your form, and then double-clicking it
Buttons are how you make things happen in your form.
We’ll use a lot of buttons to explore various parts of the
C# language. They’re also a part of almost every C#
application you’ll write.

2

Setting a property on your form
The Properties window in the IDE is a really
powerful tool that you can use to change attributes of
just about everything in your program: all visual and
functional properties for the controls on your form,
attributes of your databases, and even options on your
project itself.

3

All of these tasks have to
do with standard actions
and boilerplate code. Those
are the things the IDE is
great for helping with.

Make sure you always create a Windows Forms Application project—that tells the IDE to create an empty form and add it to your new project.

you are here 4   43

it’s all just code

…the IDE does this

private void button1_Click(object sender, EventArgs e)
{

}

Form1.cs

WindowsApplication1
.csproj

Form1.cs Form1.Designer.cs Program.cs Properties

The IDE knows how to add an empty method
to handle a button click. But it doesn’t know
what to put inside it—that’s your job.

Form1.Designer.cs

Form1.Designer.cs

partial class Form1
{ . . .
 this.Text = “Objectville Paper Company Contact List”; . . .
}

The IDE went into this file…

…and updated this line of code.

These files are created from a predefined template that contains the basic code to create and display a form.

...the IDE opens the Form1.Designer.cs file and
updates a line of code.

3

...the IDE adds code to the Form1.Designer.cs file that adds
the button to the form, and then adds code to the Form1.cs
file to handle the button click.

2

...the IDE creates the files and folders
for the project.

1

Every time you make a change in the IDE, it makes a
change to the code, which means it changes the files that
contain that code. Sometimes it just modifies a few lines,
but other times it adds entire files to your project.

This code gets added to Form1.cs.

44   Chapter 2

Where programs come from
A C# program may start out as statements in a bunch of
files, but it ends up as a program running in your computer.
Here’s how it gets there.

The .NET Framework gives you the right tools for the job
C# is just a language—by itself, it can’t actually do anything. And that’s where
the .NET Framework comes in. Remember that Maximize button you turned
off for the Contacts form? When you click the Maximize button on a window,
there’s code that tells the window how to maximize itself and take up the whole
screen. That code is part of the .NET Framework. Buttons, checkboxes, lists…
those are all pieces of the .NET Framework. So are the internal bits that hooked
your form up to the database. It’s got tools to draw graphics, read and write files,
manage collections of things…all sorts of tools for a lot of jobs that programmers
have to do every day.

The tools in the .NET Framework are divided up into namespaces. You’ve seen
these namespaces before, at the top of your code in the “using” lines. One namespace
is called System.Windows.Forms—it’s where your buttons, checkboxes, and
forms come from. Whenever you create a new Windows Forms Application project,
the IDE will add the necessary files so that your project contains a form, and those
files have the line “using System.Windows.Forms;” at the top.

great, the “talk”

Every program starts out as source code f i les
You’ve already seen how to edit a program, and how the IDE saves your program
to files in a folder. Those files are your program—you can copy them to a new
folder and open them up, and everything will be there: forms, resources, code, and
anything else you added to your project.

You can think of the IDE as a kind of fancy file editor. It automatically does the
indenting for you, changes the colors of the keywords, matches up brackets for you,
and even suggests what words might come next. But in the end, all the IDE does is
edit the files that contain your program.

The IDE bundles all of the files for your program into a solution by creating a
solution (.sln) file and a folder that contains all of the other files for the program.
The solution file has a list of the project files (which end in .csproj) in the
solution, and the project files contain lists of all the other files associated with
the program. In this book, you’ll be building solutions that only have one project
in them, but you can easily add other projects to your solution using the IDE’s
Solution Explorer.

There’s no reason you
couldn’t build your
programs in Notepad,
but it’d be a lot
more time-consuming.

you are here 4   45

it’s all just code

Build the program to create an executable
When you select “Build Solution” from the Build menu, the IDE
compiles your program. It does this by running the compiler, which
is a tool that reads your program’s source code and turns it into an
executable. The executable is a file on your disk that ends in .exe—
that’s what you double-click on to run your program. When you build
the program, it creates the executable inside the bin folder, which is
inside the project folder. When you publish your solution, it copies
the executable (and any other files necessary) into the folder you’re
publishing to.

When you select “Start Debugging” from the Debug menu, the IDE
compiles your program and runs the executable. It’s got some more
advanced tools for debugging your program, which just means running
it and being able to pause (or “break”) it so you can figure out what’s
going on.

Your program runs inside the CLR
When you double-click on the executable, Windows runs your program.
But there’s an extra “layer” between Windows and your program called
the Common Language Runtime, or CLR. Once upon a time, not
so long ago (but before C# was around), writing programs was harder,
because you had to deal with hardware and low-level machine stuff. You
never knew exactly how someone was going to configure his computer.
The CLR—often referred to as a virtual machine—takes care of all
that for you by doing a sort of “translation” between your program and
the computer running it.

You’ll learn about all sorts of things the CLR does for you. For example,
it tightly manages your computer’s memory by figuring out when your
program is finished with certain pieces of data and getting rid of them
for you. That’s something programmers used to have to do themselves,
and it’s something that you don’t have to be bothered with. You won’t
know it at the time, but the CLR will make your job of learning C# a
whole lot easier.

You don’t really have to worry
about the CLR much right
now. It’s enough to know
it’s there, and takes care
of running your program for
you automatically. You’ll learn
more about it as you go.

46   Chapter 2

The IDE helps you code
You’ve already seen a few of the things that the IDE can do.
Let’s take a closer look at some of the tools it gives you.

The Solution Explorer shows you everything in your project
You’ll spend a lot of time going back and forth between classes, and the easiest
way to do that is to use the Solution Explorer. Here’s what the Solution Explorer
looks like after creating the Objectville Paper Company Contact List program:

≥

Use the tabs to switch between open files
Since your program is split up into more than one file, you’ll usually have several
code files open at once. When you do, each one will be in its own tab in the code
editor. The IDE displays an asterisk (*) next to a filename if it hasn’t been saved yet.

≥

When you’re working on a form, you’ll often have two tabs
for it at the same time—one for the form designer, and
one to view the form’s code. Use control-tab to switch
between open windows quickly.

The Solution
Explorer shows
you how the
different files
in the solution
folder.

Here’s the form’s
resource file that
you added the
Objectville Paper
Company logo to.

mother’s little helper

you are here 4   47

it’s all just code

The Error List helps you troubleshoot compiler errors
If you haven’t already discovered how easy it is to make typos in a C#
program, you’ll find out very soon! Luckily, the IDE gives you a great tool for
troubleshooting them. When you build your solution, any problems that keep it
from compiling will show up in the Error List window at the bottom of the IDE:

Double-click on an error, and the IDE will jump to the problem in the code:

≥

The IDE helps you write code
Did you notice little windows popping up as you typed code into the IDE? That’s
a feature called IntelliSense, and it’s really useful. One thing it does is show you
possible ways to complete your current line of code. If you type MessageBox and
then a period, it knows that there are three valid ways to complete that line:

If you select Show and type (, the IDE’s IntelliSense will show you information
about how you can complete the line:

The IDE also has shortcuts called snippets that let you type an abbreviation to tell
it to fill in the rest of the code. Here’s a useful one: type mbox and press the Tab key
twice, and the IDE will fill in the MessageBox.Show method for you:

≥

The IDE knows that MessageBox has three methods called Equals, ReferenceEquals, and Show. If you type S, it selects Show. Type “(“ or space, Tab, or Enter to tell the IDE to fill it in for you. That can be a real timesaver if you’re typing a lot of really long method names.

This means that there
are 21 different ways
that you can call the
MessageBox’s Show
method (like ways to
display different buttons
or icons).

When you use Start Debugging
to run your program inside
the IDE, the first thing it
does is build your program. If
it compiles, then your program
runs. If not, it won’t run, and
will show you errors in the
Error List.

The IDE will show a red
underscore to show you
that there’s an error.

A missing semicolon
at the end of a
statement is one of
the most common
errors that keeps your
program from building!

48   Chapter 2

The IDE is great at writing visual code for you. But don’t
take our word for it. Open up Visual Studio, create a new
Windows Forms Application project, and see for yourself.

Open up the designer code
Open the Form1.Designer.cs file in the IDE. But this time, instead of opening it in
the Form Designer, open up its code by right-clicking on it in the Solution Explorer and
selecting “View Code.” Look for the Form1 class declaration:

1

 Windows Form Designer generated code+

partial class Form1
Notice how it’s a partial class? We’ll talk about that in a minute.

Find and expand the designer-generated code for the PictureBox control
Then go back to the Form1.Designer.cs tab in the IDE. Scroll down and look for this line in the code:

Click on the + on the left-hand side of the line to expand the code. Scroll down and find these lines:

2

//
// pictureBox1
//

this.pictureBox1.Location = new System.Drawing.Point(276, 28);

this.pictureBox1.Name = “pictureBox1”;

this.pictureBox1.Size = new System.Drawing.Size(100, 50);

this.pictureBox1.TabIndex = 0;

this.pictureBox1.TabStop = false;

Don’t worry if the
numbers in your code
for the Location and
Size lines are a little
different than these…

let’s dig in

When you change things in the IDE,
you’re also changing your code

Do this!

When you see a “Do this!”, pop open the IDE
and follow along. We’ll tell you exactly what
to do, and point out what to look for to get
the most out of the example we show you.

Click on the plus sign

Open up the Form designer and add a PictureBox to your form
Get used to working with more than one tab. Go to the Solution Explorer and open up the
Form designer by double-clicking on Form1.cs. Drag a new PictureBox onto a new form.

2

you are here 4   49

it’s all just code

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

There’s nothing more attractive to a kid than a big sign that says, “Don’t
touch this!” Come on, you know you’re tempted… let’s go modify the
contents of that method with the code editor! Add a button to your
form, and then go ahead and do this:

Change the code that sets the button1.Text property. What
do you think it will do to the Properties window in the IDE?
Give it a shot—see what happens! Now go back to the form designer and
check the Text property. Did it change?

1

Stay in the designer, and use the Properties window to
change the Name property to something else.
See if you can find a way to get the IDE to change the Name property. It’s
in the Properties window at the very top, under “(Name)”. What happened
to the code? What about the comment in the code?

2

Change the code that sets the Location property to (0,0) and
the Size property to make the button really big.
Did it work?

3

Go back to the designer, and change the button’s BackColor
property to something else.
Look closely at the Form1.Designer.cs code. Were any lines added?

4

You don’t have to save the
form or run the program
to see the changes. Just
make the change in the code
editor, and then click on
the tab labeled “Form1.cs
[Design]” to flip over to the
form designer—the changes
should show up immediately.

It’s always easier to use the IDE to change your form’s
Designer‑generated code. But when you do, any change you
make in the IDE ends up as a change to your project’s code.

Wait, wait ! What did that say?
Scroll back up for a minute. There it is, at the top of the Windows
Form Designer–generated code section: Most comments only start

with two slashes (//).
But the IDE sometimes
adds these three-slash
comments.

These are XML comments,
and you can use them to
document your code. Flip to
“Leftovers” section #1 in the
Appendix of this book to learn
more about them.

50   Chapter 2

Anatomy of a program

Namespace
Class

Method 1
statement
statement

Method 2
statement
statement

Every time you make a new program, you define a namespace for it so that its code is separate from the .NET Framework classes.

A class has one or more methods. Your methods always have to
live inside a class. And methods
are made up of statements—like
the ones you’ve already seen.

A class contains a piece of your
program (although some very small
programs can have just one class).

The code file starts by using the .NET Framework tools
You’ll find a set of using lines at the top of every program file. They tell C# which parts of
the .NET Framework to use. If you use other classes that are in other namespaces, then you’ll
add using lines for them, too. Since forms often use a lot of different tools from the .NET
Framework, the IDE automatically adds a bunch of using lines when it creates a form and
adds it to your project.

1

Every C# program’s code is structured in exactly the
same way. All programs use namespaces, classes,
and methods to make your code easier to manage.

Let’s take a closer look at your code
Open up the code from your Contacts project’s Form1.cs so
we can go through it piece by piece.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

These using lines are at the top of every code file. They tell C# to use all of those .NET Framework classes. Each one tells your program that the classes in this particular .cs file will use all of the classes in one specific .NET Framework namespace.

your program makes a statement

One thing to keep in mind: you don’t actually have to use a using statement. You can always
use the fully qualified name. So if you leave out using System.Windows.Forms, you can
still show a message box by calling System.Windows.Forms.MessageBox.Show(),
and the compiler will know what namespace you’re talking about.

you are here 4   51

it’s all just code

namespace Contacts

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

C# programs are organized into classes
Every C# program is organized into classes. A class can do anything, but most classes do one
specific thing. When you created the new program, the IDE added a class called Form1 that
displays a form.

2

Classes contain methods that perform actions
When a class needs to do something, it uses a method. A method takes an input, performs
some action, and sometimes produces an output. The way you pass input into a method is by
using parameters. Methods can behave differently depending on what input they’re given.
Some methods produce output. When they do, it’s called a return value. If you see the
keyword void in front of a method, that means it doesn’t return anything.

3

A statement performs one single action
When you added the MessageBox.Show() line to your program, you were adding a
statement. Every method is made up of statements. When your program calls a method, it
executes the first statement in the method, then the next, then the next, etc. When the method
runs out of statements or hits a return statement, it ends, and the program resumes after the
statement that originally called the method.

4

 private void pictureBox1_Click(object sender, EventArgs e)

 {

 MessageBox.Show(“Contact List 1.0”, “About”);

 }

 }

}

This is a class called Form1. It contains all of the code to draw the
form and the Toolbox controls on it. The IDE created it when you
told it to create a new Windows Forms Application project.

This is a method called pictureBox1_Click() that

gets called when the user clicks on the picture box.

This line calls a method named
InitializeComponent(), which the
IDE also created for you.

This method has two parameters called sender and e.

This is a statement. You already
know what it does—it pops up a
little message box window.

Look for the
matching pairs
of brackets.
Every { is
eventually
paired up with
a }. Some
pairs can be
inside others.

Your statement called the Show() method,
which is part of the MessageBox class, which
is inside the System.Windows.Forms namespace.

Your statement passed two parameters to the Show()
method. The first one was a string of text to display
in the message box, and the second one was a string to
display in its title bar.

When you called your program Contacts, the IDE created a
namespace for it called Contacts by adding the namespace
keyword at the top of your code file. Everything inside its
pair of curly brackets is part of the Contacts namespace.

52   Chapter 2

Your program knows where to start

using System;
using System.Linq;
using System.Collections.Generic;
using System.Windows.Forms;

namespace Contacts
{

 static class Program
 {

 /// <summary>
 /// The main entry point for the application.
 /// </summary>

 [STAThread]

 static void Main()
 {

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new Form1());

 }

 }

}

When you created the new Windows Application solution, one of the files the
IDE added was called Program.cs. Go to the Solution Explorer and double-
click on it. It’s got a class called Program, and inside that class is a method called
Main(). That method is the entry point, which means that it’s the very first
thing that’s run in your program.

This statement creates and
displays the Contacts form, and
ends the program when the
form’s closed.

I do declare!
The first part of every class or method is called a declaration.

Remember, this is just a starting point for you to dig into the code. But before you do, you’ll need to know what you’re looking at.

a closer look

1

2

3

4

5

Your Code Up Close

The namespace for all this code is
Contacts. We’ll talk about namespaces

more in a few pages.

Every time you run your program, it starts here, at the entry point.

Here’s some code the IDE built for you
automatically in the last chapter. You’ll
find it in Program.cs.

Every C# program can only have one entry point method, and it’s always called Main(). That’s how it knows where to start when you run it.

Lines that begin with two or more slashes are comments, which you can add anywhere you want. The slashes tell C# to ignore them.

you are here 4   53

it’s all just code

Every C# program must
have exactly one method
called Main. That method
is the entry point for
your code.
When you run your code,
the code in your Main()
method is executed FIRST.

Namespaces let you use the same name in different programs, as long as those programs aren’t also in the same namespace.

C# and .NET have lots of built-in features.
You’ll find lines like this at the top of almost every C# class
file. System.Windows.Forms is a namespace. The
using System.Windows.Forms line makes everything
in that namespace available to your program. In this case, that
namespace has lots of visual elements in it like buttons and
forms.

1

The IDE chose a namespace for your code.
Here’s the namespace the IDE created for you—it chose
Contacts based on your project’s name. All of the code in
your program lives in this namespace.

2

Your code is stored in a class.
This particular class is called Program. The IDE created it
and added the code that starts the program and brings up the
Contacts form.

3

This code has one method, and it
contains several statements.
A namespace has classes in it, and classes have methods.
Inside each method is a set of statements. In this
program, the statements handle starting up the Contacts
form. Methods are where the action happens—every
method does something.

4

Each program has a special kind of
method called the entry point.
Every C# program must have exactly one
method called Main. Even though your
program has a lot of methods, only one can be
the first one that gets executed, and that’s your
Main method. C# checks every class in your
code for a method that reads static void
Main(). Then, when the program is run, the
first statement in this method gets executed, and
everything else follows from that first statement.

5

You can have multiple
classes in a single namespace.

Your programs will use more and more
namespaces like this one as you learn
about C# and .NET’s other built-in
features throughout the book.

Technically, a program can have more
than one Main() method, and you can

tell C# which one is the entry point…

but you won’t need to do that now.

If you didn’t specify the “using” line,
you’d have to explicitly type out System.
Windows.Forms every time you use
anything in that namespace.

54   Chapter 2

You can change your
program’s entry point
As long as your program has an entry point, it doesn’t
matter which class your entry point method is in, or
what that method does. Open up the program you
wrote in Chapter 1, remove the Main method in
Program.cs, and create a new entry point.

Go back to Program.cs and change the name of the Main method to
NotMain. Now try to build and run the program. What happens?

1

Now let’s create a new entry point. Add a new class called AnotherClass.
cs. You add a class to your program by right-clicking on the project name
in the Solution Explorer and selecting “Add>>Class…”. Name your class
file AnotherClass.cs. The IDE will add a class to your program called
AnotherClass. Here’s the file the IDE added:

2

Write down what happened
when you changed the
method name, and why you
think that happened.

Add a new using line to the top of the file: using System.Windows.Forms;
Don’t forget to end the line with a semicolon!

3

class AnotherClass
{
 public static void Main()
 {
 MessageBox.Show(“Pow!”);
 }
}

using System;
using System.Linq;
using System.Collections.Generic;
using System.Text;

namespace Contacts
{
 class AnotherClass
 {
 }
}

These four standard using
lines were added to the file.

The IDE automatically named the class based on the filename.

This class is in the same Contacts namespace
that the IDE added when you first created
the Windows Application project.

Add this method to the AnotherClass class by typing it in between the curly brackets:4

MessageBox is a class that lives
in the System.Windows.Forms
namespace, which is why you had
to add the using line in step #3.
Show() is a method that’s part of
the MessageBox class.

classy things

Do this!

Right-click on the
project in Properties
and select “Add” and
“Class…”

you are here 4   55

it’s all just code

using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace SomeNamespace

{

	 class MyClass {

		 public static void DoSomething() {

			 MessageBox.Show(“This is a message”);

		 }

	 }

}

Now run it!

So what happened?
Instead of popping up the Contacts application, your
program now shows this message box. When you made
the new Main() method, you gave your program a new
entry point. Now the first thing the program does is run
the statements in that method—which means running
that MessageBox.Show() statement. There’s nothing
else in that method, so once you click the OK button, the
program runs out of statements to execute and then it ends.

Figure out how to fix your program so it pops up Contacts again.5 Hint: You only have
to change two lines in
two files to do it.

Fill in the annotations so they describe the lines in this C# file
that they’re pointing to. We’ve filled in the first one for you.

C# classes have these “using”
lines to add methods from
other namespaces

56   Chapter 2

using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace SomeNamespace

{

	 class MyClass {

		 public static void DoSomething() {

			 MessageBox.Show(“This is a message”);

		 }

	 }

}

get some answers

Fill in the annotations so they describe the lines in this C# file
that they’re pointing to. We’ve filled in the first one for you.

C# classes have these “using”
lines to add methods from
other namespaces.

All of the code lives in
classes, so the program
needs a class here.

This is a statement.
When it’s executed,
it pops up a little
window with a
message inside of it.

Q: What’s with all the curly brackets?

A: C# uses curly brackets (or “braces”) to
group statements together into blocks. Curly
brackets always come in pairs. You’ll only
see a closing curly bracket after you see an
opening one. The IDE helps you match up
curly brackets—just click on one, and you’ll
see it and its match get shaded darker.

Q: I don’t quite get what the entry
point is. Can you explain it one more
time?

A: Your program has a whole lot of
statements in it, but they’re not all run at
once. The program starts with the first
statement in the program, executes it, and
then goes on to the next one, and the next
one, etc. Those statements are usually
organized into a bunch of classes. So when
you run your program, how does it know
which statement to start with?	
	
That’s where the entry point comes in. The
compiler will not build your code unless there is
exactly one method called Main(), which
we call the entry point. The program starts
running with the first statement in Main().

Q: How come I get errors in the
Error List window when I try to run my
program? I thought that only happened
when I did “Build Solution.”

A: Because the first thing that happens
when you choose “Start Debugging” from
the menu or press the toolbar button to
start your program running is that it saves
all the files in your solution and then tries to
compile them. And when you compile your
code—whether it’s when you run it, or when
you build the solution—if there are errors,
the IDE will display them in the Error List
instead of running your program.

This class has one method.
Its name is “DoSomething,”
and when it’s called it pops
up a MessageBox..

A lot of the errors that show up when you compile your code also show up in the Error List window and as red squiggles under your code.

you are here 4   57

it’s all just code

Set properties for a label

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

partial class Form1
{ . . .
 this.BackColor = Color.DarkViolet; . . .
}

partial class Form1
{ . . .
 this.MaximizeBox = false; . . .
}

number_of_pit_stopsLabel.Name
 = “number_of_pit_stopsLabel”;
number_of_pit_stopsLabel.Size
 = new System.Drawing.Size(135, 17);
number_of_pit_stopsLabel.Text
 = “Number of pit stops:”;

partial class Form1
{
 private void InitializeComponent()
 { . . . }
}

 // This loop gets executed three times

 /// <summary>
 /// Bring up the picture of Rover when
 /// the button is clicked
 /// </summary>

Nothing—it’s a comment that the
programmer added to explain the code
to anyone who’s reading it

Disable the maximize icon () in the
title bar of the Form1 window

A special kind of comment that the IDE
uses to explain what an entire block of
code does

Change the background color of the
Form1 window

A block of code that executes whenever
a program opens up a Form1 window

58   Chapter 2

Set properties for a label

partial class Form1
{ . . .
 this.BackColor = Color.DarkViolet; . . .
}

partial class Form1
{ . . .
 this.MaximizeBox = false; . . .
}

number_of_pit_stopsLabel.Name
 = “number_of_pit_stopsLabel”;
number_of_pit_stopsLabel.Size
 = new System.Drawing.Size(135, 17);
number_of_pit_stopsLabel.Text
 = “Number of pit stops:”;

partial class Form1
{
 private void InitializeComponent()
 { . . . }
}

 // This loop gets executed three times

 /// <summary>
 /// Bring up the picture of Rover when
 /// the button is clicked
 /// </summary>

Nothing—it’s a comment that the
programmer added to explain the code
to anyone who’s reading it

A special kind of comment that the IDE
uses to explain what an entire block of
code does

Change the background color of the
Form1 window

A block of code that executes whenever
a program opens up a Form1 window

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

exercise solution

Disable the maximize icon () in the
title bar of the Form1 window

you are here 4   59

it’s all just code

namespace PetFiler2 {

 class Fish {

 public void Swim() {
 // statements
 }

 }

 partial class Cat {

 public void Purr() {
 // statements
 }

 }
 }

MoreClasses.cs

SomeClasses.cs

namespace PetFiler2 {

 class Dog {

 public void Bark() {
 // statements go here
 }

 }

 partial class Cat {

 public void Meow() {
 // more statements
 }

 }
}

Take a look at these two class files from a
program called PetFiler2. They’ve got
three classes: a Dog class, a Cat class, and
a Fish class. Since they’re all in the same
PetFiler2 namespace, statements in the
Dog.Bark() method can call Cat.Meow()
and Fish.Swim(). It doesn’t matter how
the various namespaces and classes are divided
up between files. They still act the same when
they’re run. When a class is “public”

it means every other
class in the program can
access its methods.

Two classes can be in the
same namespace

You can only split a class up into different
files if you use the partial keyword. You
probably won’t do that in any of the code
you write in this book, but the IDE used it
to split your form up into two files, Form1.
cs and Form1.Designer.cs.

Since these classes are in the same namespace,
they can all “see” each other—even though
they’re in different files. A class can span
multiple files too, but you need to use the
partial keyword when you declare it.

There’s more to namespaces and class declarations, but you
won’t need them for the work you’re doing right now. Flip to #2
in the “Leftovers” appendix to read more.

60   Chapter 2

Declare your variables
Whenever you declare a variable, you tell your program its type and its name.
Once C# knows your variable’s type, it’ll keep your program from compiling
if you make a mistake and try to do something that doesn’t make sense, like
subtract “Fido” from 48353.

			

		 int maxWeight;

		 string message;

		 bool boxChecked;

These are the names of these variables.These are the var
iable types.

These names are for YOU.
Like methods and classes, use
names that make sense and
describe the variable’s usage.

C# uses the variable type to define what data these variables can hold.

your mileage may vary

Your programs use variables to work with data
When you get right down to it, every program is basically a data cruncher.
Sometimes the data is in the form of a document, or an image in a
video game, or an instant message. But it’s all just data. And that’s where
variables come in. A variable is what your program uses to store data.

Variables vary
A variable is equal to different values at different times while your
program runs. In other words, a variable’s value varies. (Which is
why “variable” is such a good name.) This is really important, because
that idea is at the core of every program that you’ve written or will ever
write. So if your program sets the variable myHeight equal to 63:

 int myHeight = 63;

any time myHeight appears in the code, C# will replace it with its
value, 63. Then, later on, if you change its value to 12:

 myHeight = 12;

C# will replace myHeight with 12—but the variable is still called
myHeight.

Whenever your
program needs to
work with numbers,
text, true/false
values, or any other
kind of data, you’ll
use variables to keep
track of them.

	 Are you
already
familiar with
another
language?

If so, you might find a few
things in this chapter seem
really familiar. Still, it’s worth
taking the time to run through
the exercises anyway,
because there may be a few
ways that C# is different from
what you’re used to.

you are here 4   61

it’s all just code

var-i-a-ble, adjective.
able to be changed or adapted.
The drill’s variable speed bit let
Bob change the drill speed from slow
to fast based on the job he had to do.

If you write code
that uses a variable
that hasn’t been
assigned a value,
your code won’t
compile. It’s easy
to avoid that error
by combining your
variable declaration
and assignment into a
single statement.

You have to assign values to variables
before you use them
Try putting these statements into a C# program:

 int z;
 MessageBox.Show(“The answer is ” + z);

Go ahead, give it a shot. You’ll get an error, and the IDE will
refuse to compile your code. That’s because the compiler
checks each variable to make sure that you’ve assigned it a
value before you use it. The easiest way to make sure you
don’t forget to assign your variables values is to combine
the statement that declares a variable with a statement that
assigns its value:

	 int maxWeight = 25000;

	 string message = “Hi!”;

	 bool boxChecked = true;

These values
are assigned to
the variables.

Each declaration has a type,
exactly like before.

Once you’ve assigned a value to your variable, that value can change. So there’s no disadvantage to assigning a variable an initial value when you declare it.

A few useful types
Every variable has a type that tells C# what kind of data it can
hold. We’ll go into a lot of detail about the many different types
in C# in Chapter 4. In the meantime, we’ll concentrate on the
three most popular types. int holds integers (or whole numbers),
string holds text, and bool holds Boolean true/false values.

62   Chapter 2

int number = 15;

number = number + 10;

number = 36 * 15;

number = 12 - (42 / 7);

number += 10;

number *= 3;

number = 71 / 3;

int count = 0;

count ++;

count --;

string result = “hello”;

result += “ again ” + result;

MessageBox.Show(result);

result = “the value is: ” + count;

result = “”;

bool yesNo = false;

bool anotherBool = true;

yesNo = !anotherBool;

operators are standing by

C# uses familiar math symbols
Once you’ve got some data stored in a variable, what can you
do with it? Well, if it’s a number, you’ll probably want to add,
subtract, multiply, or divide it. And that’s where operators come
in. You already know the basic ones. Let’s talk about a few more.
Here’s a block of code that uses operators to do some simple math:

We declared a new
int variable called
number and set it to
15. Then we added 10
to it. After the second
statement, number is
equal to 25.

The third statement changes the
value of number, setting it equal to
36 times 15, which is 540. Then it
resets it again, setting it equal to
12 - (42 / 7), which is 6.

This operator is a little different.
+= means take the value of number
and add 10 to it. Since number is
currently equal to 6, adding 10 to it
sets its value to 16.

The *= operator
is similar to +=,
except it multiplies
the current value of
number by 3, so it
ends up set to 48.

You’ll use int a lot for counting, and when you do, the ++
and -- operators come in handy. ++ increments count
by adding one to the value, and -- decrements count by
subtracting one from it, so it ends up equal to zero.

		� Don’t worry about
memorizing these
operators now.

You’ll get to know them
because you’ll see ’em over and over again.

A bool stores true
or false. The !
operator means NOT.
It flips true to
false, and vice versa.

When you use the + operator
with a string, it just puts
two strings together. It’ll
automatically convert
numbers to strings for you.

This MessageBox
will pop up a box
that says “hello
again hello”

The “” is an empty string.
It has no characters.
(It’s kind of like a zero
for adding strings.)

Normally, 71 divided by 3 is 23.666666.... But when you’re
dividing two ints, you’ll always get an int result, so 23.666…
gets truncated to 23.

To programmers, the
word “string” almost
always means a string of
text, and “int” is almost
always short for integer.

you are here 4   63

it’s all just code

Debug this!

Flip the page and keep going!

When you set a breakpoint on a line of code, the line turns red and a red dot appears in the margin of the code editor.

When you debug your code by running it inside the IDE, as soon as your program hits a breakpoint it’ll pause and let you inspect and change the values of all the variables.

The debugger is a great tool for understanding how your programs
work. You can use it to see the code on the previous page in action.

Use the debugger to see your variables change

Create a new Windows Forms Application project
Drag a button onto your form and double-click it. Enter all of the code on the previous
page. Then take a look at the comments in the screenshot below:

1

Insert a breakpoint on the first line of code
Right-click on the first line of code (int number = 15;) and choose “Insert Breakpoint” from the
Breakpoint menu. (You can also click on it and choose Debug >> Toggle Breakpoint or press F9.)

2

Creating a new
Windows Forms
Application project
will tell the IDE to
create a new project
with a blank form
and an entry point.
You might want to
name it something like

“Chapter 2 program
1”—you’ll be building a
whole lot of programs
throughout the book.

Comments (which either
start with two or more
slashes or are surrounded
by /* and */ marks)
show up in the IDE as
green text. You don’t
have to worry about
what you type in between
those marks, because
comments are always
ignored by the compiler.

64   Chapter 2

stop bugging me!

Start debugging your program
Run your program in the debugger by clicking the Start Debugging button
(or by pressing F5, or by choosing Debug >> Start Debugging from the
menu). Your program should start up as usual and pop up the form.

3

Click on the button to trigger the breakpoint
As soon as your program gets to the line of code that has the breakpoint,
the IDE automatically brings up the code editor and highlights the current
line of code in yellow.

4

Add a watch for the number variable
Right-click on the number variable (any occurrence of it will do!) and
choose Expression: ‘number’ >> Add Watch from the menu. The
Watch window should appear in the panel at the bottom of the IDE:

5

Step through the code
Press F10 to step through the code. (You can also choose Debug >> Step Over
from the menu, or click the Step Over button in the Debug toolbar.) The current
line of code will be executed, setting the value of number to 15. The next line of
code will then be highlighted in yellow, and the Watch window will be updated:

6

Adding a watch
can help you
keep track of
the values of
the variables in
your program.
This will really
come in handy
when your
programs get
more complex.

You can also hover over
a variable while you’re
debugging to see its value
displayed in a tooltip…and
you can pin it so it says open!

As soon as the number
variable gets a new
value (15), its watch is
updated.

Continue running the program
When you want to resume, just press F5 (or Debug >> Continue), and the
program will resume running as usual.

7

you are here 4   65

it’s all just code

That’s a big part of why
booleans are so important. A
loop uses a test to figure
out if it should keep looping.

Here’s a peculiar thing about most large programs: they almost always
involve doing certain things over and over again. And that’s what
loops are for—they tell your program to keep executing a certain set
of statements as long as some condition is true (or false!).

while (x > 5)

{

 x = x - 3;

}

for (int i = 0; i < 8; i = i + 2)

{

 MessageBox.Show(“I’ll pop up 4 times”);

}

Every for loop has three statements. The first sets
up the loop. The statement will keep looping as long as
the second one is true. And the third statement gets
executed after each time through the loop.

In a while loop, all of
the statements inside
the curly brackets get
executed as long as
the condition in the
parentheses is true.

Use a code snippet to write simple for loops
You’ll be typing for loops in just a minute, and the IDE can help
speed up your coding a little. Type for followed by two tabs,
and the IDE will automatically insert code for you. If you type
a new variable, it’ll automatically update the rest of the snippet.
Press tab again, and the cursor will jump to the length.

If you change the variable to
something else, the snippet
automatically changes the
other two occurrences of it.

Press tab to get the cursor to jump to the length. The number of times this loop runs is determined by whatever you set length to. You can change length to a number or a variable.

Loops perform an act ion over and over
If your brackets (or braces—either name
will do) don’t match up, your program
won’t build, which leads to frustrating
bugs. Luckily, the IDE can help with this!
Put your cursor on a bracket, and the
IDE highlights its match:

IDE Tip: Brackets

66   Chapter 2

private void button1_Click(object sender, EventArgs e)

{

 // this is a comment

 string name = “Quentin”;

 int x = 3;

 x = x * 17;

 double d = Math.PI / 2;

 MessageBox.Show(“name is “ + name

 + “\nx is “ + x

 + “\nd is “ + d);

}

Time to start coding
The real work of any program is in its statements. But
statements don’t exist in a vacuum. So let’s set the stage
for digging in and getting some code written. Create a
new Windows Forms Application project.

Build this form

Add statements to show a message
Get started by double-clicking on the first button. Then add
these statements to the button1_Click() method. Look
closely at the code and the output it produces.

± �Don’t forget that all your statements need
to end in a semicolon:

	 name = “Joe”;

± �You can add comments to your code by
starting them with two slashes:

	 // this text is ignored

± �Variables are declared with a name and a
type (there are plenty of types that you’ll
learn about in Chapter 4):

	 int weight;
	 // weight is an integer

± �The code for a class or a method goes
between curly braces:

	 public void Go() {
	 // your code here
	 }

± �Most of the time, extra whitespace is fine:

	 int j = 1234 ;

is the same as:

	 int j = 1234;

A few helpful tips

x is a variable. The “int”
part tells C# that it’s
an integer, and the rest
of the statement sets
its value to 3.

There’s a built-in class called Math, and it’s got a member called PI. Math lives in the System namespace, so the file this code came from needs to have a using System; line at the top.

ready, set, code!

The \n is an escape sequence
to add a line break to the
message box.

you are here 4   67

it’s all just code

if/else statements make decisions
Use if/else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t)
true. A lot of if/else statements check if two things are equal.
That’s when you use the == operator. That’s different from the
single equals sign (=) operator, which you use to set a value.

	 Don’t confuse the two equals sign operators!

You use one equals sign (=) to set a variable’s value, but two equals
signs (==) to compare two variables. You won’t believe how many bugs in
programs—even ones made by experienced programmers!—are caused

by using = instead of ==. If you see the IDE complain that you “cannot implicitly
convert type ‘int’ to ‘bool’”, that’s probably what happened.

if (someValue == 24)

{

 // You can have as many statements
 // as you want inside the brackets

 MessageBox.Show(“The value was 24.”);

} else {

 MessageBox.Show(“The value wasn’t 24.”);

}

if (someValue == 24)

{

 MessageBox.Show(“The value was 24.”);

}

Every if statement
starts with a
conditional test.

The statement inside
the curly brackets is
executed only if the
test is true.

if/else statements are
pretty straightforward.
If the conditional
test is true, the
program executes the
statements between the
first set of brackets.
Otherwise, it executes
the statements between
the second set.

Always use two equals signs to check if

two things are equal to each othe
r.

68   Chapter 2

Set up condit ions and see if they’re true
Use if/else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t) true.

private void button2_Click(object sender, EventArgs e)
{
 int x = 5;
 if (x == 10)
 {
 MessageBox.Show(“x must be 10”);
 }
 else
 {
 MessageBox.Show(“x isn’t 10”);
 }
}

Set a variable and then check its value
Here’s the code for the second button. It’s an if/else statement that
checks an integer variable called x to see if it’s equal to 10.

Here’s the output. See if you can tweak one line
of code and get it to say “x must be 10” instead.

the things you can do

Make sure you stop your program before you do this—the IDE won’t let you edit the code while the program’s running. You can stop it by closing the window, using the stop button on the toolbar, or selecting “Stop Debugging” from the Debug menu.

Use logical operators to check condit ions
You’ve just looked at the == operator, which you use to test whether two
variables are equal. There are a few other operators, too. Don’t worry about
memorizing them right now—you’ll get to know them over the next few
chapters.

≥≥ The != operator works a lot like ==, except it’s true if the two things
you’re comparing are not equal.

≥≥ You can use > and < to compare numbers and see if one is bigger or
smaller than the other.

≥≥ The ==, !=, >, and < operators are called conditional operators.
When you use them to test two variables or values, it’s called
performing a conditional test.

≥≥ You can combine individual conditional tests into one long test using
the && operator for AND and the || operator for OR. So to check if
i equals 3 or j is less than 5, do (i == 3) || (j < 5).

When you use
a conditional
operator to
compare two
numbers, it’s
called a
conditional test.

First we set
up a variable
called x and
make it equal
to 5. Then we check if it’s
equal to 10.

you are here 4   69

it’s all just code

private void button3_Click(object sender, EventArgs e)

{

 int someValue = 4;

 string name = “Bobbo Jr.”;

 if ((someValue == 3) && (name == “Joe”))

 {

 MessageBox.Show(“x is 3 and the name is Joe”);

 }

 MessageBox.Show(“this line runs no matter what”);

}

Add another condit ional test
The third button makes this output. Now make a change to
two lines of code so that it pops up both message boxes.

This line checks someValue to
see if it’s equal to 3, and then
it checks to make sure name
is “Joe”.

Add loops to your program
Here’s the code for the last button. It’s got two loops. The first is a while loop,
which repeats the statements inside the brackets as long as the condition is true—do
something while this is true. The second one is a for loop. Take a look and see how it
works.

Before you click on the button, read through the code and try to figure out what the
message box will show. Then click the button and see if you were right!

private void button4_Click(object sender, EventArgs e)
{
 int count = 0;

 while (count < 10)
 {
 count = count + 1;
 }

 for (int i = 0; i < 5; i++)
 {
 count = count - 1;
 }

 MessageBox.Show(“The answer is ” + count);
}

The second part of the for statement is
the test. It says “for as long as i is les

s than

five the loop should keep on going”. The test

is run before the code block, and the b
lock

is executed only if the test is true.

This sets up the loop.
It just assigns a
value to the integer
that’ll be used in it.

This statement gets executed at
the end of each loop. In this case,
it adds one to i every time the
loop executes. This is called the
iterator, and it’s run immediately
after all the statements in the
code block.

This loop keeps
repeating as long as
the count variable
is less than 10.

70   Chapter 2

More about conditional tests
You can do simple conditional tests by checking the value of a variable using a comparison operator. Here’s how you compare two ints, x and y:
 x < y (less than)
 x > y (greater than)
 x == y (equals—and yes, with two equals signs)

These are the ones you’ll use most often.

int result = 0; // this variable will hold the final result

int x = 6; // declare a variable x and

while (x > 3) {

 // execute these statements as long as

 result = result + x; // add x

 x = x - 1; // subtract

}

for (int z = 1; z < 3; z = z + 1) {

 // start the loop by

 // keep looping as long as

 // after each loop,

 result = result + z; //

}

// The next statement will pop up a message box that says

//

MessageBox.Show(“The result is ” + result);

Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

set it to 6
We filled in the
first one for you.

over and over and over and…

you are here 4   71

it’s all just code

Wait up! There’s a flaw in your
logic. What happens to my loop if I

write a conditional test that never
becomes false?

Then your loop runs forever!
Every time your program runs a conditional test, the result
is either true or false. If it’s true, then your program
goes through the loop one more time. Every loop should
have code that, if it’s run enough times, should cause
the conditional test to eventually return false. But if it
doesn’t, then the loop will keep running until you kill the
program or turn the computer off !

Can you think of a reason that you’d want to write a
loop that never stops running? (Hint: You’ll use one
in Chapter 13….)

Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it’s going to end, how many times will it loop?

Loop #1
int count = 5;
while (count > 0) {
 count = count * 3;
 count = count * -1;
}

Loop #2
int i = 0;
int count = 2;
while (i == 0) {
 count = count * 3;
 count = count * -1;
}

Loop #3
int j = 2;
for (int i = 1; i < 100;
 i = i * 2)
{
 j = j - i;
 while (j < 25)
 {
 j = j + 5;
 }
}

Loop #5
int p = 2;
for (int q = 2; q < 32;
 q = q * 2)
{
 while (p < q)
 {
 p = p * 2;
 }
 q = p - q;
}

Loop #4

while (true) { int i = 1;}

This is sometimes called an infinit
e loop,

and there are actu
ally times when you’ll

want to use one in y
our program.

Remember, a for loop always
runs the conditional test at the
beginning of the block, and the
iterator at the end of the block.

Hint: q starts out equal to 2. Think about when the iterator “q = q * 2” is executed.

For Loop #3, how
many times will this
statement be executed?

For Loop #5, how
many times will this
statement be executed?

72   Chapter 2

int result = 0; // this variable will hold the final result

int x = 6; // declare a variable x and

while (x > 3) {

 // execute these statements as long as

 result = result + x; // add x

 x = x - 1; // subtract

}

for (int z = 1; z < 3; z = z + 1) {

 // start the loop by

 // keep looping as long as

 // after each loop,

 result = result + z; //

}

// The next statement will pop up a message box that says

//

MessageBox.Show(“The result is ” + result);

set it to 6

x is greater than 3

to the result variable

1 from the value of x

declaring a variable z and setting it to 1
z is less than 3

add 1 to z

The result is 18

add the value of z to result

Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it’s going to end, how many times will it loop?

Loop #1
This loop executes once

Loop #2
This loop runs forever

Loop #3
This loop executes 7 times

Loop #4
Another infinite loop

Loop #5
This loop
executes 8 times

if only, but only if

This loop runs twice—first with z set to 1, and
then a second time with z set to 2. Once it hits
3, it’s no longer less than 3, so the loop stops.

Take the time to really figure this one out. Here’s a perfect opportunity to try out the debugger on your own! Set a
breakpoint on the statement q = p - q;. Add watches for the variables p and q and step through the loop.

you are here 4   73

it’s all just code

Q: Is every statement always in a class?

A: Yes. Any time a C# program does something, it’s because
statements were executed. Those statements are a part of classes,
and those classes are a part of namespaces. Even when it looks
like something is not a statement in a class—like when you use
the designer to set a property on an object on your form—if you
search through your code you’ll find that the IDE added or changed
statements inside a class somewhere.

Q: Are there any namespaces I’m not allowed to use? Are
there any I have to use?

A: Yes, there are a few namespaces that are not recommended to
use. Notice how all of the using lines at the top of your C# class
files always said System? That’s because there’s a System
namespace that’s used by the .NET Framework. It’s where you
find all of your important tools to add power to your programs, like
System.Data, which lets you work with tables and databases,
and System.IO, which lets you work with files and data streams.
But for the most part, you can choose any name you want for a
namespace (as long as it only has letters, numbers, and underscores).
When you create a new program, the IDE will automatically choose a
namespace for you based on the program’s name.

Q: I still don’t get why I need this partial class stuff.

A: Partial classes are how you can spread the code for one
class between more than one file. The IDE does that when it
creates a form—it keeps the code you edit in one file (like Form1.
cs), and the code it modifies automatically for you in another file
(Form1.Designer.cs). You don’t need to do that with a
namespace, though. One namespace can span two, three, or a
dozen or more files. Just put the namespace declaration at the top of
the file, and everything within the curly brackets after the declaration
is inside the same namespace. One more thing: you can have more
than one class in a file. And you can have more than one namespace
in a file. You’ll learn a lot more about classes in the next few chapters.

Q: Let’s say I drag something onto my form, so the IDE
generates a bunch of code automatically. What happens to that
code if I click “Undo”?

A: The best way to answer this question is to try it! Give it a shot—
do something where the IDE generates some code for you.	

Drag a button on a form, change properties. Then try to undo it. What
happens? Well, for simple things you’ll see that the IDE is smart
enough to undo it itself. But for more complex things, like adding
a new SQL database to your project, you’ll be given a warning
message. It still knows how to undo the action, but it may not be able
to redo it.

Q: So exactly how careful do I have to be with the code that’s
automatically generated by the IDE?

A: You should generally be pretty careful. It’s really useful to
know what the IDE is doing to your code, and once in a while you’ll
need to know what’s in there in order to solve a serious problem. But
in almost all cases, you’ll be able to do everything you need to do
through the IDE.

¢¢ You tell your program to perform actions using
statements. Statements are always part of classes, and
every class is in a namespace.

¢¢ Every statement ends with a semicolon (;).

¢¢ When you use the visual tools in the Visual Studio IDE,
it automatically adds or changes code in your program.

¢¢ Code blocks are surrounded by curly braces { }.
Classes, while loops, if/else statements, and lots of
other kinds of statements use those blocks.

¢¢ A conditional test is either true or false. You use
conditional tests to determine when a loop ends, and
which block of code to execute in an if/else statement.

¢¢ Any time your program needs to store some data, you
use a variable. Use = to assign a variable, and == to
test if two variables are equal.

¢¢ A while loop runs everything within its block (defined
by curly braces) as long as the conditional test is
true.

¢¢ If the conditional test is false, the while loop code
block won’t run, and execution will move down to the
code immediately after the loop block.

74   Chapter 2

Output:

This magnet didn’t fall off the fridge…

Answers on page 82.

your code… now in magnet form

Code Magnets
Part of a C# program is all scrambled up on the fridge. Can you rearrange
the code snippets to make a working C# program that produces the
message box? Some of the curly braces fell on the floor and they were
too small to pick up, so feel free to add as many of those as you need!
(Hint: you’ll definitely need to add a couple. Just write them in!)

if (x == 2) {

Result = Result + “b c”;

}

x = x - 1;

Result = Result + “-”;

if (x == 1) {
Result = Result + “d”;x = x - 1;

}

if (x > 2) {

Result = Result +
 “a”;

}

string Result = “”;

int x = 3;

while (x > 0) {

MessageBox.Show(Result);

The “” is an empty string—it means Result
has no characters in it yet.

you are here 4   75

it’s all just code

Time to get some practice using if/else statements. Can you build this program?

Here’s the form.

This is a label.
You can use the properties to change the
font size and make it boldface. Use the
BackColor property to set to red—choose

“Red” from the selection of web colors.

Add this checkbox.
Drag it out of the toolbox and onto your
form. Use the Text property to change the
text that’s next to it. (You also use the Text
property to change the button and label text.)

Pop up this message if the user clicks the button but the
box IS NOT checked.
If your checkbox is named checkBox1 (you can change the Name property
if you want), then here’s the conditional test to see if it’s checked:

checkBox1.Checked == true

If the user clicks the button and the box IS checked, change the
background color of the label.
If the label background color is red, change it to blue when the button is clicked. If it’s blue,
change it back to red. Here’s a statement that sets the background color of a label called label1:

label1.BackColor = Color.Red;

(Hint: The conditional test to check whether a label’s background color is red looks a lot like that
statement—but with one important difference!)

We’ll give you a lot of exercises like this throughout the book. We’ll give you the answer in a couple of pages. If you get stuck, don’t be afraid to peek at the answer—it’s not cheating!

You’ll be creating a lot of applications
throughout this book, and you’ll need to give
each one a different name. We recommend
naming this one “2 Fun with if-else
statements” based on the chapter number
and the text in the title bar of the form.

76   Chapter 2

this.BackColor = Color.FromArgb(c, 255 - c, c);

Application.DoEvents();

Here’s the form to build1

Make the form background go all psychedelic!
When the button’s clicked, make the form’s background
color cycle through a whole lot of colors! Create a loop that
has a variable c go from 0 to 253. Here’s the block of code
that goes inside the curly brackets:

2

Make it slower
Slow down the flashing by adding this line after the
Application.DoEvents() line:

3

Color me impressed!

.NET has a bunch o
f predefined

colors like Blue and Red, but it also

lets you make your own colors using

the Color.FromArgb() method, by

specifying thre
e numbers: a red valu

e,

a green value, a
nd a blue value

.

This line tells the program to stop your loop momentarily and do the other things it needs to do, like refresh the form, check for mouse clicks, etc. Try taking out this line and seeing what happens. The form doesn’t redraw itself, because it’s waiting until the loop is done before it deals with those events.

System.Threading.Thread.Sleep(3); This statement inserts a 3 millisecond

delay in the loop. It’s a part
of

the .NET library, and it’s in the

System.Threadi
ng namespace.

Hint: If you declare a variable inside a for lo
op—for (int c = 0; …)—then

that variable’s only valid inside the loop’s c
urly brackets. So if you have

two for loops that both use the variable, you
’ll either declare it in each

loop or have one declaration outside the lo
op. And if the variable c is

already declared outside of the loops, you
can’t use it in either one.

ooh, pretty!

Let’s build something flashy! Start by creating a new Windows Forms Application in the IDE.

For now, you’ll use Application.DoEvents() to make sure
your form stays responsive while it’s in a loop, but it’s
kind of a hack. You shouldn’t use this code outside of a
toy program like this. Later on in the book, you’ll learn
about a much better way to let your programs do more
than one thing at a time!

you are here 4   77

it’s all just code

Make it smoother
Let’s make the colors cycle back to where they started. Add another loop that has
c go from 254 down to 0. Use the same block of code inside the curly brackets.

4

Keep it going
Surround your two loops with another loop that continuously executes and doesn’t
stop, so that when the button is pressed, the background starts changing colors and
then keeps doing it. (Hint: The while (true) loop will run forever!)

5 When one loop is inside another
one, we call it a “nested” loop.

Make it stop
Make the loop you added in step #5 stop when the program is
closed. Change your outer loop to this:

 while (Visible)

Now run the program and click the X box in the corner. The
window closes, and then the program stops! Except…there’s a
delay of a few seconds before the IDE goes back to edit mode.

6

Uh-oh! The program doesn’t stop!
Run your program in the IDE. Start it looping. Now close the window. Wait a
minute—the IDE didn’t go back into edit mode! It’s acting like the program
is still running. You need to actually stop the program using the square stop
button in the IDE (or select “Stop Debugging” from the Debug menu).

Can you figure out what’s causing that
delay? Can you fix it so the program ends
immediately when you close the window?

Hint: The && operator means “AND”. It’s how you string a bunch of conditional tests together into one big test that’s true only if the first test is true AND the second is true AND the third, etc. And it’ll come in handy to solve this problem.

When you’re checking a Boolean value like Visible in an if statement or a loop, sometimes it’s tempting to test for (Visible == true). You can leave off the “== true”—it’s enough to include the Boolean.

When you’re working with a
form or control, Visible is
true as long as the form or
control is being displayed. If
you set it to false, it makes
the form or control disappear.

78   Chapter 2

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Fun_with_If_Else
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 if (checkBox1.Checked == true)
 {
 if (label1.BackColor == Color.Red)
 {
 label1.BackColor = Color.Blue;
 }
 else
 {
 label1.BackColor = Color.Red;
 }
 }
 else
 {
 MessageBox.Show(“The box is not checked”);
 }
 }
 }
}

Time to get some practice using if/else statements. Can you build this program?

Here’s the code for the form. We named our solution
“Fun with If Else”, so the IDE made the namespace
Fun_with_If_Else. If you gave your solution a
different name, it’ll have a different namespace.

The IDE added the method called button1_Click() to your form when you double-clicked on the button. The method gets run every time the button’s clicked.

The inner if statement
checks the label’s
color. If the label
is currently red, it
executes a statement
to turn it blue.

This MessageBox pops up if
the checkbox isn’t checked.

The outer if
statement checks
the checkbox to
see if it’s been
checked. Check!

This statement’s
run if the label’s
background color is
not red to make it
set back to red.

exercise solution

You can download the code for all of the exercise solutions
in this book from www.headfirstlabs.com/books/hfcsharp/

http://www.headfirstlabs.com/books/hfcsharp/

you are here 4   79

it’s all just code

private void button1_Click(object sender, EventArgs e) {

 while (Visible) {

 for (int c = 0; c < 254 && Visible; c++) {

 this.BackColor = Color.FromArgb(c, 255 - c, c);

 Application.DoEvents();

 System.Threading.Thread.Sleep(3);

 }

 for (int c = 254; c >= 0 && Visible; c--) {

 this.BackColor = Color.FromArgb(c, 255 - c, c);

 Application.DoEvents();

 System.Threading.Thread.Sleep(3);

 }

 }

}

Let’s build something flashy!

Sometimes we won’t show you the entire code in the solution, just the bits that changed. All of the logic in the FlashyThing project is in this button1_Click() method that the IDE added when you double-clicked the button in the form designer.

Was your code a little different than ours? There’s more than one way
to solve any programming problem—like you could have used while loops
instead of for loops. If your program works, then you got the exercise right!

We fixed the extra delay by
using the && operator to make
each of the for loops also check
Visible. That way the loop ends
as soon as Visible turns false.

The outer loop
keeps running as
long as the form
is visible. As soon
as it’s closed,
Visible is false,
and the while
will stop looping.

The first for loop makes the colors cycle one way, and the second for loop reverses them so they look smooth.

When the IDE added this method, it added an extra
return before the curly bracket. Sometimes we’ll put the
bracket on the same line like this to save space—but C#
doesn’t care about extra space, so this is perfectly valid.

Can you figure out what’s causing that
delay? Can you fix it so the program ends
immediately when you close the window?

The delay happens because the for loops need to finish before the
while loop can check if Visible is still true. You can fix it by adding
&& Visible to the conditional test in each for loop.

We used &&
Visible instead
of && Visible
== true. It’s
just like saying
“if it’s visible”
instead of “if
it’s true that
it’s visible”—they
mean the same
thing.

Consistency is generally really important to make it easy
for people to read code. But we’re purposefully showing you
different ways, because you’ll need to get used to reading
code from different people using different styles.

80   Chapter 2

Pool Puzzle
Your job is to take code snippets from

the pool and place them into
the blank lines in the code. You
may not use the same snippet
more than once, and you won’t
need to use all the snippets.
Your goal is to make a class

that will compile and run. Don’t
be fooled—this one’s harder than it
looks.

Note: each snippet
from the pool can only
be used once!

Poem = Poem + “ ”;
Poem = Poem + “a “;
Poem = Poem + “n“;
Poem = Poem + “an“;

x = x + 1;
x = x + 2;
x = x - 2;
x = x - 1;

x > 0
x < 1
x > 1
x > 3
x < 4

Poem = Poem + “noys “;
Poem = Poem + “oise “;
Poem = Poem + “ oyster “;
Poem = Poem + “annoys”;
Poem = Poem + “noise”;

int x = 0;
String Poem = “”;

while (__________) {

 if (x < 1) {

 }

 if (__________) {

 }
 if (x == 1) {

 }
 if (___________) {

 }

}

MessageBox.Show(Poem);

Output

this puzzle’s tougher than it looks

We included these “Pool Puzzle” exercises throughout the book
to give your brain an extra-tough workout. If you’re the kind
of person who loves twisty little logic puzzles, then you’ll love
this one. If you’re not, give it a shot anyway—but don’t be
afraid to look at the answer to figure out what’s going on.
And if you’re stumped by a pool puzzle, definitely move on.

Answers on page 83.

you are here 4   81

it’s all just code

Csharpcross
How does a crossword help you learn C#? Well, all the words are C#-
related and from this chapter. The clues also provide mental twists and
turns that will help you burn alternative routes to C# right into your brain.

1

2 3

4 5

6 7

8 9 10

11 12

13 14

15

16

Across

3. You give information to a method using these
4. button1.Text and checkBox3.Name are examples of
8. Every statement ends with one of these
10. The name of every C# program's entry point
11. Contains methods
12. Your statements live here
14. A kind of variable that's either true or false
15. A special method that tells your program where to
start
16. This kind of class spans multiple files

Down

1. The output of a method is its _________ value
2. System.Windows.Forms is an example of one of
these
5. A tiny piece of a program that does something
6. A block of code is surrounded by
7. The kind of test that tells a loop when to end
9. You can call _________.Show() to pop up a simple
Windows dialog box
13. The kind of variable that contains a whole number

Across
3. You give information to a method using these

4. button1.Text and checkBox3.Name are examples of
8. Every statement ends with one of these
10. The name of every C# program’s entry point
11. Contains methods
12. Your code statements live in one of these
14. A kind of variable that’s either true or false
15. A special method that tells your program where to start
16. This kind of class spans multiple files

Down
1. The output of a method is its _________ value
2. System.Windows.Forms is an example of one of
these
5. A tiny piece of a program that does something
6. A block of code is surrounded by _________
7. The kind of test that tells a loop when to end
9. You can call _________.Show() to pop up a simple
Windows dialog box
13. The kind of variable that contains a whole number

82   Chapter 2

exercise solutions

Output:

This magnet didn’t fall off the fridge…

Code Magnets Solution
Part of a C# program is all scrambled up on the fridge. Can you
rearrange the code snippets to make a working C# program that
produces the message box? Some of the curly braces fell on the
floor and they were too small to pick up, so feel free to add as
many of those as you need!

string Result = “”;

MessageBox.Show(Result);

int x = 3;

while (x > 0) {

if (x > 2) {

Result = Result +
 “a”;

}

x = x - 1;

Result = Result + “-”;

if (x == 2) {

Result = Result + “b c”;

}

if (x == 1) {
Result = Result + “d”;x = x - 1;

}

The first time through the
loop, x is equal to 3 so this
conditional test will be true.

This statement makes x equal to 2 the first time through the loop, and 1 the second time through.

you are here 4   83

it’s all just code

int x = 0;
String Poem = “”;

while (x < 4) {

 Poem = Poem + “a”;
 if (x < 1) {
 Poem = Poem + “ ”;
 }
 Poem = Poem + “n”;

 if (x > 1) {

 Poem = Poem + “ oyster”;

 x = x + 2;
 }
 if (x == 1) {

 Poem = Poem + “noys ”;
 }
 if (x < 1) {

 Poem = Poem + “oise ”;
 }

 x = x + 1;
}
MessageBox.Show(Poem);

Pool Puzzle Solution
Your job was to take code snippets from the

pool and place them into the blank lines
in the code. Your goal was to make a
class that will compile and run.

Did you get a different
solution? Type it into the IDE
and see if it works! There’s
more than one correct solution
to the pool puzzle.

If you want a real challenge, see if you
can figure out what it is! Here’s a hint:
There’s another solution that keeps the
word fragments in order.

Output:

84   Chapter 2

Csharpcross Solution

R
1

N
2

P
3

A R A M E T E R S

A T

M P
4

R O P E R T I E S
5

U

B
6

E T R C
7

R S
8

E M
9

I C O L O N M
10

A I N O

A P E T N

C
11

L A S S M
12

E T H O D

K C S M I

E E A I
13

B
14

O O L E A N T

T G N N I

S E
15

N T R Y P O I N T O

B E N

O G A

X E P
16

A R T I A L

R

Across

3. You give information to a method using these
[parameters]
4. button1.Text and checkBox3.Name are examples of
[properties]
8. Every statement ends with one of these [semicolon]
10. The name of every C# program's entry point
[main]
11. Contains methods [class]
12. Your statements live here [method]
14. A kind of variable that's either true or false
[boolean]
15. A special method that tells your program where to
start [entry point]
16. This kind of class spans multiple files [partial]

Down

1. The output of a method is its _________ value
[return]
2. System.Windows.Forms is an example of one of
these [namespace]
5. A tiny piece of a program that does something
[statement]
6. A block of code is surrounded by [brackets]
7. The kind of test that tells a loop when to end
[conditional]
9. You can call _________.Show() to pop up a simple
Windows dialog box [MessageBox]
13. The kind of variable that contains a whole number
[integer]

crossword solution

this is a new chapter   85

objects: get oriented!3

Making code make sense

Every program you write solves a problem.�
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

...and that’s why my
Husband class doesn’t have a
HelpOutAroundTheHouse()
method or a PullHisOwnWeight()
method.

86   Chapter 3

How Mike thinks about his problems
Mike’s a programmer about to head out to a job
interview. He can’t wait to show off his C# skills, but
first he has to get there—and he’s running late!

This is Frank Loudly with
your eye-in-the-sky shadow traffic
report. It looks like a three-car
pileup on Liberty has traffic backed

up all the way to 32nd Street.

I’ll take the 31st Street
bridge, head up Liberty Avenue,
and go through Bloomfield.

No problem. If I take
Route 28 instead, I’ll
still be on time!

Mike figures out the route he’ll take to get to the interview.1

Good thing he had his radio on. There’s
a huge traffic jam that’ll make him late!

2

Mike comes up with a new route to get
to his interview on time.

3

Mike sets his destination, then comes up with a route.

Mike gets new
information about a

street he needs to
 avoid.

Now he can come up
with a new route to
the interview.

mike’s going places

you are here 4   87

objects: get oriented!

How Mike’s car navigat ion system thinks about his problems
Mike built his own GPS navigation system, which he
uses to help him get around town.

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

SetDestination(“Fifth Ave & Penn Ave”);
string route;
route = GetRoute();

“Take 31st Street Bridge to Liberty Avenue to Bloomfield”

string route;
route = GetRoute();

“Take Route 28 to the Highland Park Bridge to Washington Blvd”

ModifyRouteToAvoid(“Liberty Ave”);

The navigation system sets
a destination and comes up
with a route.

Mike’s navigation system solves the street
navigation problem the same way he does.

The navigation system gets new information about a street it needs to avoid.

Now it can come up with a new

route to the dest
ination.

Here’s the output from the
GetRoute() method—it’s
a string that contains the
directions Mike should follow.

GetRoute() gives a new route that doesn’t include the
street Mike wants to avoid.

Here’s a diagram of a class
in Mike’s program. It shows
the name on top, and the
methods on the bottom.

88   Chapter 3

Some methods have a return value
Every method is made up of statements that do things. Some methods just execute
their statements and then exit. But other methods have a return value, or a value
that’s calculated or generated inside the method, and sent back to the statement that
called that method. The type of the return value (like string or int) is called the
return type.

The return statement tells the method to immediately exit. If your method doesn’t
have a return value—which means it’s declared with a return type of void—then
the return statement just ends with a semicolon, and you don’t always have to
have one in your method. But if the method has a return type, then it must use the
return statement.

Here’s a statement that calls a method to multiply two numbers. It returns an int:

Mike’s Navigator class has methods to set and modify routes
Mike’s Navigator class has methods, which are where the action happens. But unlike the
button_Click() methods in the forms you’ve built, they’re all focused around a single
problem: navigating a route through a city. That’s why Mike stuck them together into one
class, and called that class Navigator.

Mike designed his Navigator class so that it’s easy to create and modify routes. To get a
route, Mike’s program calls the SetDestination() method to set the destination, and
then uses the GetRoute() method to put the route into a string. If he needs to change the
route, his program calls the ModifyRouteToAvoid() method to change the route so that
it avoids a certain street, and then calls the GetRoute() method to get the new directions.

class Navigator {

 public void SetCurrentLocation(string locationName) { ... }

 public void SetDestination(string destinationName) { ... };

 public void ModifyRouteToAvoid(string streetName) { ... };

 public string GetRoute() { ... };

} This is the return type of the method. It means that the statement calling the GetRoute() method can use it to set a string variable that will contain the directions. When it’s void, that means the method doesn’t return anything.
string route =
 GetRoute();

Mike chose method
names that would make
sense to someone who
was thinking about how
to navigate a route
through a city.

public int MultiplyTwoNumbers(int firstNumber, int secondNumber) {

	 int result = firstNumber * secondNumber;

	 return result;

}

int myResult = MultiplyTwoNumbers(3, 5);

Here’s an example of a method
that has a return type—it
returns an int. The method uses
the two parameters to calculate
the result and uses the return
statement to pass the value
back to the statement that
called it.

Methods can take values
like 3 and

5. But you can also use var
iables to

pass values to a method.

set methods and modify routes

you are here 4   89

objects: get oriented!

Create a new Windows Forms Application project in the IDE. Then add a class file to it called
Talker.cs by right-clicking on the project in the Solution Explorer and selecting “Class…” from
the Add menu. When you name your new class file “Talker.cs”, the IDE will automatically name
the class in the new file Talker. Then it’ll pop up the new class in a new tab inside the IDE.

1

Use what you’ve learned to build a program that uses a class
Let’s hook up a form to a class, and make its button call a method inside that class. Do this!

Add using System.Windows.Forms; to the top of the class file. Then add code to the class:

class Talker {
 public static int BlahBlahBlah(string thingToSay, int numberOfTimes)
 {
 string finalString = “”;
 for (int count = 1; count <= numberOfTimes; count++)
 {
 finalString = finalString + thingToSay + “\n”;
 }
 MessageBox.Show(finalString);
 return finalString.Length;
 }
}

2

The BlahBlahBlah() method’s return value is an
integer that has the total length of the message it
displayed. You can add “.Length” to any string to
figure out how long it is.

This line of code adds the
contents of thingToSay and a line break (“\n”) onto the end of it to the finalString variable.

This is called a property. Every string
has a property called Length. When it
calculates the length of a string, a line
break (“\n”) counts as one character.

This statement
declares a finalString
variable and sets it
equal to an empty
string.

Flip the page to keep going!

¢¢ Classes have methods that contain statements that perform actions. You can design a class that is easy to use by
choosing methods that make sense.

¢¢ Some methods have a return type. You set a method’s return type in its declaration. A method with a declaration that starts
“public int” returns an int value. Here’s an example of a statement that returns an int value: return 37;

¢¢ When a method has a return type, it must have a return statement that returns a value that matches a return type. So if
you’ve got a method that’s declared “public string” then you need a return statement that returns a string.

¢¢ As soon as a return statement in a method executes, your program jumps back to the statement that called the method.

¢¢ Not all methods have a return type. A method with a declaration that starts “public void” doesn’t return anything at
all. You can still use a return statement to exit a void method: if (finishedEarly) { return; }

90   Chapter 3

introducing objects

Make your project’s form look like this.

Then double-click on the button and have it run this code that calls BlahBlahBlah() and assigns its return
value to an integer called len:

private void button1_Click(object sender, EventArgs e)
{
 int len = Talker.BlahBlahBlah(textBox1.Text, (int)numericUpDown1.Value);
 MessageBox.Show(“The message length is ” + len);
}

3

This is a NumericUpDown control. Set its Minimum property to 1, its Maximum property to 10, and its Value property to 3.

Set the default text of
the TextBox to “Hello!”
using its Text property.

Now run your program! Click the button and watch it pop up two
message boxes. The class pops up the first message box, and the
form pops up the second one.

4

The BlahBlahBlah() method
pops up this message box
based on what’s in its
parameters.

When the
method returns
a value, the form
pops it up in this
message box.

So what did you just build?
The new class has one method called BlahBlahBlah() that takes two parameters. The first
parameter is a string that tells it something to say, and the second is the number of times to say it.
When it’s called, it pops up a message box with the message repeated a number of times. Its return
value is the length of the string. The method needs a string for its thingToSay parameter and a
number for its numberOfTimes parameter. It’ll get those parameters from a form that lets the user
enter text using a TextBox control and a number using NumericUpDown control.

Now add a form that uses your new class!

You can add a class to your project and share
its methods with the other classes in the project.

you are here 4   91

objects: get oriented!

It’d be great if I
could compare a few
routes and figure out
which is fastest....

Mike gets an idea
The interview went great! But the traffic
jam this morning got Mike thinking about
how he could improve his navigator.

Navigator

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator2

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator3

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

He could create three different Navigator classes…
Mike could copy the Navigator class code and paste it into two more
classes. Then his program could store three routes at once.

Whoa, that can’t be right!
What if I want to change a
method? Then I need to go
back and fix it in three places.

Right! Maintaining three copies of the same code
is really messy. A lot of problems you need to solve need a
way to represent one thing a bunch of different times. In this case,
it’s a bunch of routes. But it could be a bunch of turbines, or dogs,
or music files, or anything. All of those programs have one thing in
common: they always need to treat the same kind of thing in the
same way, no matter how many of the thing they’re dealing with.

This box is a class diagram. It lists
all of the methods in a class, and
it’s an easy way to see everything
that it does at a glance.

92   Chapter 3

for instance…

new Navigator()

new
 Na

vig
ato

r()

Navigator obj
e c

tnavigator3

Mike can use objects to solve his problem
Objects are C#’s tool that you use to work with
a bunch of similar things. Mike can use objects
to program his Navigator class just once, but
use it as many times as he wants in a program.

Navigator obj
e c

tnavigator1

Navigator obj
e c

t

navigator2

new Navigator()

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator navigator1 = new Navigator();

navigator1.SetDestination(“Fifth Ave & Penn Ave”);

string route;

route = navigator1.GetRoute();

All you need to create an
object is the new keyword
and the name of a class.

Now you can use the object! When you
create an object from a class, that object
has all of the methods from that class.

This is the Navigator class

in Mike’s program. It lists

all of the methods that a

Navigator object
can use.

Mike needed to compare
three different routes
at once, so he used
three Navigator objects
at the same time.

you are here 4   93

objects: get oriented!

House object

House object

House object

A class is like a blueprint for an object. If you wanted to build
five identical houses in a suburban housing development, you
wouldn’t ask an architect to draw up five identical sets of
blueprints. You’d just use one blueprint to build five houses.

You use a class to build an object

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to
make any number of houses,
and you can use one class to
make any number of objects.

House

GiveShelter()
GrowLawn()
MailDelivered()
ClogDrainPipes()
AccruePropertyTaxes()
NeedRepairs()

An object gets its methods from its class
Once you build a class, you can create as many objects as you want from
it using the new statement. When you do, every method in your class
becomes part of the object.

115 Maple
Drive

38 Pine
Street

26A Elm
Lane

94   Chapter 3

objects improve your code

House object

115 Maple
Drive

When you create a new object from a class,
i t’s called an instance of that class

Check it out for yourself!
Open any project that uses a button called button1,
and use the IDE to search the entire project for the
text “button1 = new”. You’ll find the code that
the IDE added to the form designer to create the
instance of the Button class.

in-stance, noun.
an example or one occurrence of
something. The IDE search-and-
replace feature finds every instance
of a word and changes it to another.

Do this!

Guess what…you already know this stuff ! Everything in the toolbox
is a class: there’s a Button class, a TextBox class, a Label
class, etc. When you drag a button out of the toolbox, the IDE
automatically creates an instance of the Button class and calls
it button1. When you drag another button out of the toolbox,
it creates another instance called button2. Each instance of
Button has its own properties and methods. But every button acts
exactly the same way, because they’re all instances of the same class.

Before: Here’s a picture of your
computer’s memory when your
program starts.

After: Now it’s
got an instance
of the House
class in memory.

House mapleDrive115 = new House();

Your program executes a new statement.

you are here 4   95

objects: get oriented!

Navigator obj
e c

tnavigator3

4.2 miles

Navigator obj
e c

tnavigator1

3.5 miles

Navigator obj
e c

t

navigator2

3.8 miles

Navigator obj
e c

tnavigator1

3.5 miles

A better solut ion…brought to you by objects!
Mike came up with a new route comparison program that uses objects to find
the shortest of three different routes to the same destination. Here’s how he
built his program.

string destination = textBox1.Text;

Navigator navigator1 = new Navigator();

navigator1.SetDestination(destination);

route = navigator1.GetRoute();

Navigator

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

He created a Navigator object and set its destination.2

Mike set up a GUI with a text box—textBox1 contains the destination for the three
routes. Then he added textBox2, which has a street that one of the routes should avoid; and
textBox3, which contains a different street that the third route has to include.

1

Then he added a second Navigator object called navigator2. He
called its SetDestination() method to set the destination, and
then he called its ModifyRouteToAvoid() method.

3

The third Navigator object is called navigator3. Mike set its
destination, and then called its ModifyRouteToInclude() method.

4

The SetDestination(),

ModifyRouteToAvoid(), and

ModifyRouteToInclude()

methods all take a st
ring as a

parameter.

Now Mike can call each object’s TotalDistance() method to figure
out which route is the shortest. And he only had to write the code once,
not three times!

5

Any time you
create a new
object from a
class, it’s called
creating an
instance of
that class.

GUI stands for Graphical User Interface, which is what you’re building when you make a form in the form designer.

The navigator1
object is an
instance of the
Navigator class.

96   Chapter 3

a little head first secret sauce

Wait a minute! You didn’t give
me nearly enough information
to build the navigator program.

That’s right, we didn’t. A geographic navigation program is
a really complicated thing to build. But complicated programs follow
the same patterns as simple ones. Mike’s navigation program is an
example of how someone would use objects in real life.

Theory and pract ice
Speaking of patterns, here’s a pattern that you’ll see over and over again
throughout the book. We’ll introduce a concept or idea (like objects) over the
course of a few pages, using pictures and small code excerpts to demonstrate the
idea. This is your opportunity to take a step back and try to understand what’s
going on without having to worry about getting a program to work.

House object

115 Maple
DriveWhen we’re introducing a new concept

(like objects), keep your eyes open for
pictures and code excerpts like this.

House mapleDrive115 = new House();

After we’ve introduced a concept, we’ll give you a chance to get it into your
brain. Sometimes we’ll follow up the theory with a writing exercise—like the
Sharpen your pencil exercise on the next page. Other times we’ll jump straight
into code. This combination of theory and practice is an effective way to get
these concepts off of the page and stuck in your brain.

A lit t le adv ice for the code exercises
If you keep a few simple things in mind, it’ll make the code exercises go
smoothly:

≥≥ It’s easy to get caught up in syntax problems, like missing parentheses
or quotes. One missing bracket can cause many build errors.

≥≥ It’s much better to look at the solution than get frustrated with a
problem. When you’re frustrated, your brain doesn’t like to learn.

≥≥ All of the code in this book is tested and definitely works in Visual
Studio 2010! But it’s easy to accidentally type things wrong (like
typing a one instead of a lowercase L).

≥≥ If your solution just won’t build, try downloading it from the Head
First Labs website: http://www.headfirstlabs.com/hfcsharp

When you run into
a problem with
a coding exercise,
don’t be afraid
to peek at the
solution. You can
also download the
solution from the
Head First Labs
website.

http://www.headfirstlabs.com/hfcsharp

you are here 4   97

objects: get oriented!

Follow the same steps that Mike followed on the facing page to write
the code to create Navigator objects and call their methods.

string destination = textBox1.Text;
string route2StreetToAvoid = textBox2.Text;
string route3StreetToInclude = textBox3.Text;

Navigator navigator1 = new Navigator();
navigator1.SetDestination(destination);
int distance1 = navigator1.TotalDistance();

1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and use its
TotalDistance() method to set an integer variable called distance2.

We gave you a head start. Here’s the code Mike wrote to get the destination and street names from the textboxes.

int shortestDistance = Math.Min(distance1, Math.Min(distance2, distance3));

The Math.Min() method built into the .NET Framework compares two numbers and
returns the smallest one. Mike used it to find the shortest distance to the destination.

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude() method, and use its
TotalDistance() method to set an integer variable called distance3.

And here’s the code to create the
navigator object, set its destination,
and get the distance.

Navigator navigator2 =

navigator2.

navigator2.

int distance2 =

98   Chapter 3

string destination = textBox1.Text;
string route2StreetToAvoid = textBox2.Text;
string route3StreetToInclude = textBox3.Text;

Navigator navigator1 = new Navigator();
navigator1.SetDestination(destination);
int distance1 = navigator1.TotalDistance();

static cling

Follow the same steps that Mike followed on the facing page to write
the code to create Navigator objects and call their methods.

1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and use its
TotalDistance() method to set an integer varable called distance2.

int shortestDistance = Math.Min(distance1, Math.Min(distance2, distance3));

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude() method, and use its
TotalDistance() method to set an integer varable called distance3.

Navigator navigator2 =

navigator2.

navigator2.

int distance2 =

new Navigator()

SetDestination(destination);

ModifyRouteToAvoid(route2StreetToAvoid);

navigator2.TotalDistance();

Navigator navigator3 = new Navigator()

navigator3.SetDestination(destination);

navigator3.ModifyRouteToInclude(route3StreetToInclude);

int distance3 = navigator3.TotalDistance();

The Math.Min() method built into the .NET Framework compares two numbers and
returns the smallest one. Mike used it to find the shortest distance to the destination.

And here’s the code to create the
navigator object, set its destination,
and get the distance.

We gave you a head start. Here’s the code Mike wrote to get the destination and street names from the textboxes.

you are here 4   99

objects: get oriented!

Yes! That’s why you used the static keyword in your methods.
Take another look at the declaration for the Talker class you built a few pages ago:

 class Talker
 {
 public static int BlahBlahBlah(string thingToSay, int numberOfTimes)
 {
 string finalString = “”;

When you called the method you didn’t create a new instance of Talker. You just did this:

 Talker.BlahBlahBlah(“Hello hello hello”, 5);

That’s how you call static methods, and you’ve been doing that all along. If you take away
the static keyword from the BlahBlahBlah() method declaration, then you’ll have to
create an instance of Talker in order to call the method. Other than that distinction, static
methods are just like object methods. You can pass parameters, they can return values, and
they live in classes.

There’s one more thing you can do with the static keyword. You can mark your whole
class as static, and then all of its methods must be static too. If you try to add a non-static
method to a static class, it won’t compile.

I’ve written a few classes now, but I haven’t used “new”
to create an instance yet! So does that mean I can call
methods without creating objects?

Q: When I think of something that’s “static,” I think of
something that doesn’t change. Does that mean non-static
methods can change, but static methods don’t? Do they
behave differently?

A: No, both static and non-static methods act exactly the
same. The only difference is that static methods don’t require
an instance, while non-static methods do. A lot of people have
trouble remembering that, because the word “static” isn’t really
all that intuitive.

Q: So I can’t use my class until I create an instance of
an object?

A: You can use its static methods. But if you have methods
that aren’t static, then you need an instance before you can
use them.

Q: Then why would I want a method that needs an
instance? Why wouldn’t I make all my methods static?

A: Because if you have an object that’s keeping track of
certain data—like Mike’s instances of his Navigator
class that each kept track of a different route—then you can
use each instance’s methods to work with that data. So when
Mike called his ModifyRouteToAvoid() method
in the navigator2 instance, it only affected the route
that was stored in that particular instance. It didn’t affect the
navigator1 or navigator3 objects. That’s how he
was able to work with three different routes at the same time—
and his program could keep track of all of it.

Q: So how does an instance keep track of data?

A: Turn the page and find out!

100   Chapter 3

An instance uses f ie lds to keep track of things
You change the text on a button by setting its Text property in the
IDE. When you do, the IDE adds code like this to the designer:

 button1.Text = “Text for the button”;

Now you know that button1 is an instance of the Button class.
What that code does is modify a field for the button1 instance.
You can add fields to a class diagram—just draw a horizontal line in
the middle of it. Fields go above the line, methods go underneath it.

Technically, it’s setting a property. A property is very similar to a field—but we’ll get into all that a little later on.

Class
Field1
Field2
Field3

Method1()
Method2()
Method3()

Methods are what an object does. Fields are what the object knows.
When Mike created three instances of Navigator classes, his program created three objects.
Each of those objects was used to keep track of a different route. When the program created the
navigator2 instance and called its SetDestination() method, it set the destination for that
one instance. But it didn’t affect the navigator1 instance or the navigator3 instance.

An object’s behavior is defined by its methods,
and it uses fields to keep track of its state.

This is where a class
diagram shows the
fields. Every instance
of the class uses
them to keep track
of its state.

Add this line to
separate the fields from the methods.

Navigator
Destination
Route

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Every instance of Navigator knows
its destination and its route.

What a Navigator object does is let you set a destination, modify its route, and get information about that route.

an object’s state of affairs

you are here 4   101

objects: get oriented!

Clown
Name
Height

TalkAboutYourself()

Let’s create some instances!
It’s easy to add fields to your class. Just declare
variables outside of any methods. Now every
instance gets its own copy of those variables.

class Clown {
 public string Name;
 public int Height;

 public void TalkAboutYourself() {
 MessageBox.Show(“My name is ”
 + Name + “ and I’m ”
 + Height + “ inches tall.”);
 }
}

Write down the contents of each message box that will be displayed
after the statement next to it is executed.

Clown oneClown = new Clown();

oneClown.Name = “Boffo”;

oneClown.Height = 14;

oneClown.TalkAboutYourself();

Clown anotherClown = new Clown();

anotherClown.Name = “Biff”;

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

Remember, when you see “void” in front of a method, it means that it doesn’t return any value.

When you want to create instances
of your class, don’t use the static
keyword in either the class declaration or the method declaration.

Remember, the *= operator tells C#
to take whatever’s on the left of the
operator and multiply it by whatever’s
on the right.

102   Chapter 3

Write down the contents of each message box that will be displayed
after the statement next to it is executed.

Clown oneClown = new Clown();

oneClown.Name = “Boffo”;

oneClown.Height = 14;

oneClown.TalkAboutYourself();

Clown anotherClown = new Clown();

anotherClown.Name = “Biff”;

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

Each of these new statements creates an instance of the Clown class by reserving a chunk of memory on the heap for that object and filling it up with the object’s data.

Boffo

Biff

Biff

Biff

14

16

11

32

Thanks for the memory
When your program creates an object, it lives in a part of the
computer’s memory called the heap. When your code creates an
object with a new statement, C# immediately reserves space in the
heap so it can store the data for that object.

Let’s take a closer look at what happened here

Here’s a picture of the heap before the
project starts. Notice that it’s empty.

When your program creates a new object, it gets added to the heap.

a heaping helping of objects

you are here 4   103

objects: get oriented!

Clown object
 #

 3

“Biff”

11

Clown object
 #

 2

“Biff”

32

Clown object
 #

 1
“Boffo”

14

Clown object
 #

 3

“Biff”

11

Clown object
 #

 2

“Biff”

16

Clown object
 #

 1

“Boffo”

14

Clown object
 #

 2

“Biff”

16

Clown object
 #

 1

“Boffo”

14

Clown object
 #

 1

Clown oneClown = new Clown();

oneClown.Name = “Boffo”;

oneClown.Height = 14;

oneClown.TalkAboutYourself();

1

Clown anotherClown = new Clown();

anotherClown.Name = “Biff”;

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

2

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

3

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

4

What’s on your program’s mind
Here’s how your program creates a new instance of the
Clown class:

 Clown myInstance = new Clown();

That’s actually two statements combined into one. The
first statement declares a variable of type Clown (Clown
myInstance;). The second statement creates a new
object and assigns it to the variable that was just created
(myInstance = new Clown();). Here’s what the heap
looks like after each of these statements:

The first objec
t

is created, an
d its

fields are set
.

These statements create
the second object and fill it
with data.

Then the third Clown object is

created and populated.

There’s no new command, which means
these statements don’t create a new
object. They’re just modifying one
that’s already in memory.

This object is an instance of the
Clown class.

“Boffo”

14

104   Chapter 3

You can use class and method
names to make your code intuit i ve
When you put code in a method, you’re making a choice about how to structure
your program. Do you use one method? Do you split it into more than one? Or do
you even need a method at all? The choices you make about methods can make your
code much more intuitive—or, if you’re not careful, much more convoluted.

int t = m.chkTemp();
if (t > 160) {
 T tb = new T();
 tb.clsTrpV(2);
 ics.Fill();
 ics.Vent();
 m.airsyschk();
}

Here’s a nice, compact chunk of code. It’s from a control program that
runs a machine that makes candy bars.

1

Those statements don’t give you any hints about why the code’s doing what it’s doing. In this case, the
programmer was happy with the results because she was able to get it all into one method. But making
your code as compact as possible isn’t really useful! Let’s break it up into methods to make it easier to
read, and make sure the classes are given names that make sense. But we’ll start by figuring out what the
code is supposed to do.

2

General Electronics Type 5 Candy Bar Maker

Specification Manual

The nougat temperature must be checked every 3 minutes by an

automated system. If the temperature exceeds 160°C, the candy

is too hot, and the system must perform the candy isolation

cooling system (CICS) vent procedure.

•	 Close the trip throttle valve on turbine #2

•	 Fill the isolation cooling system with a solid stream of water

•	 Vent the water

•	 Verify that there is no evidence of air in the system

How do you figure out what

your code is supposed to
 do?

Well, all code is written for

a reason. So it’s up to y
ou to

figure out that reason!
In this

case, we can look up the page

in the specification manual
that the programmer followed.

Take a second and look at that code. Can you figure out what it does?

The clsTrpV()
method has one
parameter, but we
don’t know what
it’s supposed to be.

The chkTemp() method returns an integer… but what does it do?

making methods make sense

“tb”, “ics”, and “m”
are terrible names!
We have no idea
what they do. And
what’s that T class
for?

you are here 4   105

objects: get oriented!

public void DoCICSVentProcedure() {
 Turbine turbineController = new Turbine();
 turbineController.CloseTripValve(2);
 IsolationCoolingSystem.Fill();
 IsolationCoolingSystem.Vent();
 Maker.CheckAirSystem();
}

public boolean IsNougatTooHot() {
 int temp = Maker.CheckNougatTemperature();
 if (temp > 160) {
 return true;
 } else {
 return false;
 }
}

That page from the manual made it a lot easier to understand the code. It also gave us some great
hints about how to make our code easier to understand. Now we know why the conditional test checks
the variable t against 160—the manual says that any temperature above 160°C means the nougat
is too hot. And it turns out that m was a class that controlled the candy maker, with static methods
to check the nougat temperature and check the air system. So let’s put the temperature check into a
method, and choose names for the class and the methods that make the purpose obvious.

3

You can make your code easier to read and write by thinking about
the problem your code was built to solve. If you choose names for your
methods that make sense to someone who understands that problem,
then your code will be a lot easier to decipher…and develop!

What does the specification say to do if the nougat is too hot? It tells us to perform the candy isolation
cooling system (or CICS) vent procedure. So let’s make another method, and choose an obvious name
for the T class (which turns out to control the turbine) and the ics class (which controls the isolation
cooling system, and has two static methods to fill and vent the system):

4

Now the code’s a lot more intuitive! Even if you don’t know that the CICS vent procedure needs to
be run if the nougat is too hot, it’s a lot more obvious what this code is doing:

5

if (IsNougatTooHot() == true) {
 DoCICSVentProcedure();
}

This method’s return type is
Boolean, which means it returns a
true or false value.

A void return type means the method doesn’t return any value at all.

The IsNougatTooHot()
method’s return type By naming the class “Maker” and the

method “CheckNougatTemperature”,
the code is a lot easier to understand.

106   Chapter 3

Give your classes a natural structure
Take a second and remind yourself why you want to make your methods intuitive:
because every program solves a problem or has a purpose. It might not
be a business problem—sometimes a program’s purpose (like FlashyThing) is just to
be cool or fun! But no matter what your program does, the more you can make your
code resemble the problem you’re trying to solve, the easier your program will be to
write (and read, and repair, and maintain…).

CandyController

DoMaintenanceTests()
DoCICSVentProcedure()
IsNougatTooHot()

Let’s build a class diagram
Take another look at the if statement in #5 on the previous page. You already know that statements
always live inside methods, which always live inside classes, right? In this case, that if statement was
in a method called DoMaintenanceTests(), which is part of the CandyController class.
Now take a look at the code and the class diagram. See how they relate to each other?

class CandyController {

 public void DoMaintenanceTests() {
 ...
 if (IsNougatTooHot() == true) {
 DoCICSVentProcedure();
 }
 ...
 }

 public void DoCICSVentProcedure() ...

 public boolean IsNougatTooHot() ...

}

Use class diagrams to plan out your classes
A class diagram is a simple way to draw your
classes out on paper. It’s a really valuable tool
for designing your code BEFORE you start
writing it.
Write the name of the class at the top of
the diagram. Then write each method in the
box at the bottom. Now you can see all of the
parts of the class at a glance!

ClassName

Method()
Method()
Method()...

classes au naturale

you are here 4   107

objects: get oriented!

t

Turbine

The code for the candy control system we built on the previous
page called three other classes. Flip back and look through the
code, and fill in their class diagrams.

Fill()

We filled in the class name for this one. What method goes here?

One of the classes had
a method called Fill().
Fill in its class name
and its other method.

There was one other class in the code on the previous page. Fill in its name and method.

108   Chapter 3

t

Turbine

CloseTripValve()
Fill()

IsolationCoolingSystem

Vent()

Maker

CheckNougatTemperature()

CheckAirSystem()

a few helpful tips

The code for the candy control system we built on the
previous page called three other classes. Flip back and
look through the code, and fill in their class diagrams.

Class diagrams help you organize your
classes so they make sense
Writing out class diagrams makes it a lot easier to spot potential problems in your
classes before you write code. Thinking about your classes from a high level before
you get into the details can help you come up with a class structure that will make
sure your code addresses the problems it solves. It lets you step back and make sure
that you’re not planning on writing unnecessary or poorly structured classes or
methods, and that the ones you do write will be intuitive and easy to use.

Dishwasher

CleanDishes()
AddDetergent()
SetWaterTemperature()
ParkTheCar()

Dishwasher

CleanDishes()
AddDetergent()
SetWaterTemperature()

The class is called
“Dishwasher”, so all the
methods should be about
washing dishes. But one

method—ParkTheCar()—has
nothing to do with dishes, so it
should be taken out and put in

another class.

You could figure out that
Maker is a class because it
appears in front of a dot in
Maker.CheckAirSystem().

you are here 4   109

objects: get oriented!

v

DeliveryGuy

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

Each of these classes has a serious design flaw. Write down what
you think is wrong with each class, and how you’d fix it.

Class23

CandyBarWeight()
PrintWrapper()
GenerateReport()
Go()

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

This class is part of the candy manufacturing system from earlier.

CashRegister

MakeSale()
NoSale()
PumpGas()
Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

DeliveryGirl

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

110   Chapter 3

Here’s how we corrected the classes. We show just one
possible way to fix the problems—but there are plenty of other ways
you could design these classes depending on how they’ll be used.

create a class

CandyMaker

CandyBarWeight()
PrintWrapper()
GenerateReport()
MakeTheCandy()

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

This class is part of the candy manufacturing system from earlier.

CashRegister

MakeSale()
NoSale()
Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

DeliveryPerson

Gender

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

The class name doesn’t describe what the class does. A programmer

who sees a line of code that calls Class23.Go() will have no idea what

that line does. We’d also rename the method to something that’s more

descriptive—we chose MakeTheCandy(), but it could be anything.

It looks like the DeliveryGuy class and the DeliveryGirl class

both do the same thing—they track a delivery person who’s out

delivering pizzas to customers. A better design would replace

them with a single class that adds a field for gender..

All of the methods in the class do stuff that has to do with

a cash register—making a sale, getting a list of transactions,

adding cash… except for one: pumping gas. It’s a good idea to

pull that method out and stick it in another class.

We added the Gender field because we
assumed there was a reason to track delivery
guys and girls separately, and that’s why
there were two classes for them.

you are here 4   111

objects: get oriented!

x == 3
x == 4

x < 4
x < 5
x > 0
x > 1

public partial class Form1 : Form
{
 private void button1_Click(object sender, EventArgs e)
 {
 String result = “”;

 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 result = result + e1.Hello() + “\n”;

 if (____________) {

 e2.count = e2.count + 1;

 }

 if (____________) {

 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 MessageBox.Show(result + “Count: ” + e2.count);
 }

 class ____________ {
 public int _________ = 0;

 public string ___________ {

 return “helloooo...”;
 }
 }
}

Output

e1 = e1 + 1;
e1 = count + 1;
e1.count = count + 1;
e1.count = e1.count + 1;

e2 = e1;
Echo e2;
Echo e2 = e1;
Echo e2 = new Echo();

x
y
e2
count

Echo
Tester
Echo()
Count()
Hello()

Bonus Question!

If the last line of output was
24 instead of 10, how would
you complete the puzzle?
You can do it by changing
just one statement.

Answers on page 122.

Pool Puzzle
Your job is to take code snippets from the

pool and place them into the blank
lines in the code. You may use
the same snippet more than once,
and you won’t need to use all the
snippets. Your goal is to make
classes that will compile and run

and produce the output listed.

Note: Each
snippet from the
pool can be used
more than once!

112   Chapter 3

Build a class to work with some guys
Joe and Bob lend each other money all the time. Let’s create a class to
keep track of them. We’ll start with an overview of what we’ll build.

Guy object #
 2

Guy object #
 1

Guy
Name
Cash

GiveCash()
ReceiveCash()

The new statements
that create the two
instances live in the
code that gets run as
soon as the form is
created. Here’s what
the heap looks like
after the form is
loaded.

We’ll create a Guy class and add two instances of it to a form
The form will have two fields, one called joe (to keep track of the first object),
and the other called bob (to keep track of the second object).

1

We’ll set each Guy object’s cash and name fields
The two objects represent different guys, each with his own name and a
different amount of cash in his pocket.

2

Guy object #
 2

“Bob”

50

Guy object #
 1

“Joe”

100

We’ll give cash to the guys and take cash from them
We’ll use each guy’s ReceiveCash() method to increase a guy’s cash,
and we’ll use his GiveCash() method to reduce it.

3

Guy object #
1

“Joe”

75

Each guy has a Name
field that keeps track of
his name, and a Cash field
that has the number of
bucks in his pocket.

When you take an instance
of Guy and call its
ReceiveCash() method, you
pass the amount of cash
the guy will take as a
parameter. So calling joe.
ReceiveCash(25) tells Joe
to receive 25 bucks and
add them to his wallet.

The form calls the object’s ReceiveCash()
method. It’s called ReceiveCash() because
he’s receiving the cash.

The method returns the
number of bucks that the guy
added to his Cash field.

working class guys

Guy object #
1

“Joe”

50 joe.ReceiveCash(25);

We chose names for the
methods that make sense.
You call a Guy object’s
GiveCash() method to tell
him to give up some of his
cash, and his ReceiveCash()
method when you want him
to take some cash back.
We could have called them
GiveCashToSomeone() and
ReceiveCashFromSomeone(),
but that would have been
very long!

you are here 4   113

objects: get oriented!

Do this!

class Guy {
 public string Name;
 public int Cash;

 public int GiveCash(int amount) {
 if (amount <= Cash && amount > 0) {
 Cash -= amount;
 return amount;
 } else {
 MessageBox.Show(
 “I don’t have enough cash to give you ” + amount,
 Name + “ says...”);
 return 0;
 }
 }

 public int ReceiveCash(int amount) {
 if (amount > 0) {
 Cash += amount;
 return amount;
 } else {
 MessageBox.Show(amount + “ isn’t an amount I’ll take”,
 Name + “ says...”);
 return 0;
 }
 }

}

Create a project for your guys
Create a new Windows Forms Application project (because we’ll
be using a form). Then use the Solution Explorer to add a new
class to it called Guy. Make sure to add “using System.
Windows.Forms;” to the top of the Guy class file. Then fill
in the Guy class. Here’s the code for it:

The Guy class has two fields. The Name field is
a string, and it’ll contain the guy’s name (“Joe”).
And the Cash field is an int, which will keep
track of how many bucks are in his pocket.

The GiveCash() method has one parameter
called amount that you’ll use to tell the
guy how much cash to give you.

He uses an if statement to check
whether he has enough cash—if he
does, he takes it out of his pocket and
returns it as the return value.

The Guy makes
sure that you’re
asking him for a
positive amount
of cash, otherwise
he’d add to his
cash instead of
taking away from
it.

If the guy doesn’t have enough cash, he’ll tell you so with a message box, and then he’ll make GiveCash() return 0.

Be careful with your curly brackets. It’s easy to have the wrong number—make sure that every opening bracket has a matching closing bracket. When they’re all balanced, the IDE will automatically indent them for you when you type the last closing bracket.

The ReceiveCash() method works just like
the GiveCash() method. It’s passed an
amount as a parameter, checks to make
sure that amount is greater than zero,
and then adds it to his cash.

If the amount was positive, then the
ReceiveCash() method returns the amount
added. If it was zero or negative, the guy
shows a message box and then returns 0.

114   Chapter 3

Build a form to interact with the guys
The Guy class is great, but it’s just a start. Now put together
a form that uses two instances of the Guy class. It’s got labels
that show you their names and how much cash they have, and
buttons to give and take cash from them.

Build this!

Add two buttons and three labels to your form
The top two labels show how much cash each guy has. We’ll also add a field called bank to the
form—the third label shows how much cash is in it. We’re going to have you name some of the
labels that you drag onto the forms. You can do that by clicking on each label that you want
to name and changing its “(Name)” row in the Properties window. That’ll make your code a
lot easier to read, because you’ll be able to use “joesCashLabel” and “bobsCashLabel” instead of

“label1” and “label2”.

1

Add fields to your form
Your form will need to keep track of the two guys, so you’ll need a field for each of them. Call
them joe and bob. Then add a field to the form called bank to keep track of how much money
the form has to give to and receive from the guys.

namespace Your_Project_Name {

 public partial class Form1 : Form {

 Guy joe;

 Guy bob;

 int bank = 100;

 public Form1() {

 InitializeComponent();

 }

2

Since we’re using
Guy objects to
keep track of
Joe and Bob,
you declare
their fields in
the form using
the Guy class.

The amount of cash in the form’s bank
field goes up and down depending on how much money the form gave to and received from the Guy objects.

Name the top label
joesCashLabel, the label
underneath it bobsCashLabel, and the bottom label
bankCashLabel. You can
leave their Text properties
alone; we’ll add a method to
the form to set them.

This button will call
the Joe object’s
ReceiveCash() method,
passing it 10 as
the amount, and
subtracting from the
form’s bank field the
cash that Joe receives.

This button will call the Bob
object’s GiveCash() method,
passing it 5 as the amount, and
adding the cash that Bob gives
to the form’s bank field.

joe says, “where’s my money?”

you are here 4   115

objects: get oriented!

Add a method to the form to update the labels
The labels on the right-hand side of the form show how much cash each guy has and how much
is in the bank field. So add the UpdateForm() method to keep them up to date—make sure
the return type is void to tell C# that the method doesn’t return a value. Type this method
into the form right underneath where you added the bank field:

 public void UpdateForm() {

 joesCashLabel.Text = joe.Name + “ has $” + joe.Cash;

 bobsCashLabel.Text = bob.Name + “ has $” + bob.Cash;

 bankCashLabel.Text = “The bank has $” + bank;

 }

3

Double-click on each button and add the code to interact with the objects
Make sure the left-hand button is called button1, and the right-hand button is called button2.
Then double-click each of the buttons—when you do, the IDE will add two methods called
button1_Click() and button2_Click() to the form. Add this code to each of them:

 private void button1_Click(object sender, EventArgs e) {

 if (bank >= 10) {

 bank -= joe.ReceiveCash(10);

 UpdateForm();

 } else {

 MessageBox.Show(“The bank is out of money.”);

 }

 }

 private void button2_Click(object sender, EventArgs e) {

 bank += bob.GiveCash(5);

 UpdateForm();

 }

4

The “Receive $5 from Bob” button
doesn’t need to check how much is
in the bank, because it’ll just add
whatever Bob gives back. If Bob’s out of money,

GiveCash() will return zero.

When the user clicks the “Give $10 to Joe” button, the form calls the Joe object’s ReceiveCash() method—but only if the bank has enough money.

The bank needs at least $10 to give to
Joe. If there’s not enough, it’ll pop up
this message box.

This new method
is simple. It just
updates the three
labels by setting
their Text properties.
You’ll have each
button call it to keep
the labels up to date.

Start Joe out with $50 and start Bob out with $100
It’s up to you to figure out how to get Joe and Bob to start out with their Cash and
Name fields set properly. Put it right underneath InitializeComponent() in the form.
That’s part of that designer-generated method that gets run once, when the form is first initialized.
Once you’ve done that, click both buttons a number of times—make sure that one button takes
$10 from the bank and adds it to Joe, and the other takes $5 from Bob and adds it to the bank.

 public Form1() {
 InitializeComponent();

 // Initialize joe and bob here!

 }

5

Add the lines of code here to create the two objects and set their Name and Cash fields.

Notice how the labels
are updated using the
Guy objects’ Name and
Cash fields.

116   Chapter 3

Make sure you save the
project now—we’ll come
back to it in a few pages.

It’s up to you to figure out how to get Joe and Bob to start out with their Cash
and Name fields set properly. Put it right underneath InitializeComponent() in
the form.

public Form1() {
 InitializeComponent();

 bob = new Guy();
 bob.Name = “Bob”;
 bob.Cash = 100;

 joe = new Guy();
 joe.Name = “Joe”;
 joe.Cash = 50;

 UpdateForm();
}

Here’s where we set up the first
instance of Guy. The first line
creates the object, and the next
two set its fields.

Q: Why doesn’t the solution start with “Guy bob = new
Guy()”? Why did you leave off the first “Guy”?

A: Because you already declared the bob field at the top of the
form. Remember how the statement “int i = 5;” is the same
as the two statements “int i” and “i = 5;”? This is the same
thing. You could try to declare the bob field in one line like this:
“Guy bob = new Guy();”. But you already have the first
part of that statement (“Guy bob;”) at the top of your form. So
you only need the second half of the line, the part that sets the bob
field to create a new instance of Guy().

Q: OK, so then why not get rid of the “Guy bob;” line at
the top of the form?

A: Then a variable called bob will only exist inside that special
“public Form1()” method. When you declare a variable
inside a method, it’s only valid inside the method—you can’t access
it from any other method. But when you declare it outside of your
method but inside the form or a class that you added, then you’ve
added a field accessible from any other method inside the form.

Q: What happens if I don’t leave off that first “Guy”?

A: You’ll run into problems—your form won’t work, because it
won’t ever set the form’s bob variable. Think about it for a minute,
and you’ll see why it works that way. If you have this code at the top
of your form:	
	
 public partial class Form1 : Form {
 Guy bob;
	
and then you have this code later on, inside a method:	
	
 Guy bob = new Guy();
	
then you’ve declared two variables. It’s a little confusing, because
they both have the same name. But one of them is valid throughout
the entire form, and the other one—the new one you added—is only
valid inside the method. The next line (bob.Name = “Bob”;)
only updates that local variable, and doesn’t touch the one in the
form. So when you try to run your code, it’ll give you a nasty error
message (“NullReferenceException not handled”), which just means
you tried to use an object before you created it with new.

Then we do the same for the
second instance of the Guy class.

Make sure you call UpdateForm() so
the labels look right when the form
first pops up.

exercise solution

you are here 4   117

objects: get oriented!

There’s an easier way to init ialize objects
Almost every object that you create needs to be initialized in some way.
And the Guy object is no exception—it’s useless until you set its Name
and Cash fields. It’s so common to have to initialize fields that C# gives
you a shortcut for doing it called an object initializer. And the IDE’s
IntelliSense will help you do it.

joe = new Guy();
joe.Name = “Joe”;
joe.Cash = 50;

joe = new Guy() { Cash = 50, Name = “Joe” };

joe = new Guy() {

joe = new Guy() { Cash = 50,

Delete the second two lines and the semicolon after “Guy(),” and add a right curly bracket.2

Here’s the original code that you wrote to
initialize Joe’s Guy object.

1

Press space. As soon as you do, the IDE pops up an IntelliSense window that shows you all of
the fields that you’re able to initialize.

3

joe = new Guy() { Cash = 50
Press tab to tell it to add the Cash field. Then set it equal to 50.4

Type in a comma. As soon as you do, the other field shows up.5

Finish the object initializer. Now you’ve saved yourself two lines of code!5

Object intializers
save you time and
make your code
more compact
and easier to
read…and the
IDE helps you
write them.

This new declaration does exactly the same
thing as the three lines of code you wrote
originally. It’s just shorter and easier to read.

joe = new Guy() {

118   Chapter 3

Navigator obj
e c

tbestRoute

obj Object

myInst

± �You’re building your program to solve a problem.
Spend some time thinking about that problem. Does it break down into pieces
easily? How would you explain that problem to someone else? These are good
things to think about when designing your classes.

A few ideas for designing intuitive classes

± �What real-world things will your program use?
A program to help a zoo keeper track her animals’ feeding schedules might have
classes for different kinds of food and types of animals.

± �Use descriptive names for classes and methods.
Someone should be able to figure out what your classes and methods do just by
looking at their names.

± �Look for similarities between classes.
Sometimes two classes can be combined into one if they’re really similar. The candy
manufacturing system might have three or four turbines, but there’s only one
method for closing the trip valve that takes the turbine number as a parameter.

It’d be great if I
could compare a few
routes and figure out
which is fastest....

BlockedRoad
Name
Duration

FindDetour()

ClosedRoad
StreetName
ReasonItsClosed

CalculateDelay()

Detour
Name
Duration
ReasonItsClosed

FindDetour()
CalculateDelay()

a few helpful tips

you are here 4   119

objects: get oriented!

Use an object initializer to initialize Bob’s instance of Guy
You’ve already done it with Joe. Now make Bob’s instance work with an object
initializer too.

1

Add two more buttons to your form
The first button tells Joe to give 10 bucks to Bob, and the second tells Bob to give 5
bucks back to Joe. Before you double-click on the button, go to the Properties
window and change each button’s name using the “(Name)” row—it’s at the top of
the list of properties. Name the first button joeGivesToBob, and the second one
bobGivesToJoe.

2

This button tells Joe to
give 10 bucks to Bob, so
you should use the “(Name)”
row in the Properties
window to name it
joeGivesToBob.

This button tells Bob to give 5 bucks to Joe. Name it bobGivesToJoe.

Make the buttons work
Double-click on the joeGivesToBob button in the designer. The IDE will add a
method to the form called joeGivesToBob_Click() that gets run any time the
button’s clicked. Fill in that method to make Joe give 10 bucks to Bob. Then double-
click on the other button and fill in the new bobGivesToJoe_Click() method
that the IDE creates so that Bob gives 5 bucks to Joe. Make sure the form updates itself
after the cash changes hands.

3

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

If you already clicked the button, just delete
it, add it back to your form, and rename it.
Then delete the old button3_Click() method
that the IDE added before, and use the new
method it adds now.

120   Chapter 3

exercise solution

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

public partial class Form1 : Form {
 Guy joe;
 Guy bob;
 int bank = 100;

 public Form1() {
 InitializeComponent();
 bob = new Guy() { Cash = 100, Name = “Bob” };
 joe = new Guy() { Cash = 50, Name = “Joe” };
 UpdateForm();
 }

 public void UpdateForm() {
 joesCashLabel.Text = joe.Name + “ has $” + joe.Cash;
 bobsCashLabel.Text = bob.Name + “ has $” + bob.Cash;
 bankCashLabel.Text = “The bank has $” + bank;
 }

 private void button1_Click(object sender, EventArgs e) {
 if (bank >= 10) {
 bank -= joe.ReceiveCash(10);
 UpdateForm();
 } else {
 MessageBox.Show(“The bank is out of money.”);
 }
 }

 private void button2_Click(object sender, EventArgs e) {
 bank += bob.GiveCash(5);
 UpdateForm();
 }

 private void joeGivesToBob_Click(object sender, EventArgs e) {
 bob.ReceiveCash(joe.GiveCash(10));
 UpdateForm();
 }

 private void bobGivesToJoe_Click(object sender, EventArgs e) {
 joe.ReceiveCash(bob.GiveCash(5));
 UpdateForm();
 }

}

Here are the object initializers for the two instances of the Guy class. Bob gets initialized with 100 bucks and his name.

The trick here is
thinking through
who’s giving the
cash and who’s
receiving it.

Take a close look at
how the Guy methods
are being called. The
results returned
by GiveCash() are
pumped right into
ReceiveCash() as its
parameter.

To make Joe give cash
to Bob, we call Joe’s
GiveCash() method and
send its results into
Bob’s ReceiveCash()
method.

Before you go on, take a minute and flip to #1 in the “Leftovers” appendix,
because there’s some basic syntax that we haven’t covered yet. You won’t
need it to move forward, but it’s a good idea to see what’s there.

you are here 4   121

objects: get oriented!

Objectcross
It’s time to give your left brain a break, and put that
right brain to work: all the words are object‑related
and from this chapter.

1

2 3 4 5 6

7

8 9

10

11

12

13

14 15

Across

2. If a method's return type is _____, it doesn't return
anything.
7. An object's fields define its _______
9. A good method __________ makes it clear what the
method does.
10. Where objects live
11. What you use to build an object
13. What you use to pass information into a method
14. The statement you use to create an object
15. A special kind of field that's used by the form
controls

Down

1. This form control lets the user choose a number
from a range you set.
3. It's a great idea to create a class ________ on paper
before you start writing code
4. What an object uses to keep track of what it knows
5. These define what an object does
6. An object's methods define its ________
7. Don't use this keyword in your class declaration if
you want to be able to create instances of it
8. An object is an ______________ of a class
12. This statement tells a method to immediately exit,
and specifies the value that should be passed back to
the statement that called the method.

Across

2. If a method’s return type is _____, it doesn’t return anything

7. An object’s fields define its _______

9. A good method __________ makes it clear what the method
does

10. Where objects live

11. What you use to build an object

13. What you use to pass information into a method

14. The statement you use to create an object

15. Used to set an attribute on controls and other classes

Down

1. This form control lets the user choose a number from a range
you set

3. It’s a great idea to create a class ________ on paper before
you start writing code

4. An object uses this to keep track of what it knows

5. These define what an object does

6. An object’s methods define its ________

7. Don’t use this keyword in your class declaration if you want to
be able to create instances of it

8. An object is an ______________ of a class

12. This statement tells a method to immediately exit, and can
specify the value that should be passed back to the statement
that called the method

122   Chapter 3

public partial class Form1 : Form
{
 private void button1_Click(object sender, EventArgs e)
 {
 String result = “”;

 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 result = result + e1.Hello() + “\n”;

 if (____________) {

 e2.count = e2.count + 1;

 }

 if (____________) {

 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 MessageBox.Show(result + “Count: ” + e2.count);
 }

 class ____________ {
 public int _________ = 0;

 public string ___________ {

 return “helloooo...”;
 }
 }
}

puzzle solutions

That’s the correct answer.
And here’s the bonus answer!

Pool Puzzle Solution
Your job was to take code snippets from

the pool and place them into the
blank lines in the code. Your goal
was to make classes that will
compile and run and produce the
output listed.

Echo e2 = new Echo();

x < 4

e1.count = e1.count + 1;

x > 0

x == 3

Echo
count

Echo e2 = e1;

Hello()

you are here 4   123

objects: get oriented!

N
1

U

M V
2

O I D
3

F
4

M
5

B
6

E I I E S
7

T A T E

R I
8

N
9

A M E T T H

I N G L H
10

E A P A

C
11

L A S S R D O T V

U T A R
12

D I I

P P
13

A R A M E T E R S C O

D N T R

O C U

W N
14

E W P
15

R O P E R T Y

N N

Across

2. If a method's return type is _____, it doesn't return
anything. [void]
7. An object's fields define its _______ [state]
9. A good method __________ makes it clear what the
method does. [name]
10. Where objects live [heap]
11. What you use to build an object [class]
13. What you use to pass information into a method
[parameters]
14. The statement you use to create an object [new]
15. A special kind of field that's used by the form
controls [property]

Down

1. This form control lets the user choose a number
from a range you set. [numericupdown]
3. It's a great idea to create a class ________ on paper
before you start writing code [diagram]
4. What an object uses to keep track of what it knows
[field]
5. These define what an object does [methods]
6. An object's methods define its ________ [behavior]
7. Don't use this keyword in your class declaration if
you want to be able to create instances of it [static]
8. An object is an ______________ of a class
[instance]
12. This statement tells a method to immediately exit,
and specifies the value that should be passed back to
the statement that called the method. [return]

Objectcross Solution

but wait... there’s more!

I’m still hungry for more!

Wouldn’t it be dreamy
if there was a C# book that
was more fun than endlessly

debugging code? It’s probably
nothing but a fantasy....

Hey, you! Are you looking for a way to get productive fast
with C#, .NET and Visual Studio 2010?

Do you want to get C#
programming concepts and ideas
stuck in your brain... fast?

Are you the kind of person who likes to
learn by doing, rather than poring through pages and pages of dry reference material?

Do you want to learn C# by
building projects and solving
puzzles?

Looking for the easiest way to become a great C# programmer?

Thanks for reading the
first three chapters of

Head First C#, the fastest
way to learn to program

with C# and the .NET
framework. Like what you
read so far? Then have a

look at the next few pages
to see what’s coming next!

intrigued? flip the page to find out more!4

Look no further! All this and more is here today. Introducing
Head First C#, 2nd edition!

Get a handle on C#

Head First C# is a complete learning
experience for programming with C#,
the .NET Framework, and the Visual
Studio IDE. Built for your brain, this
book covers C# and .NET 4.0 and Visual
Studio 2010, and teaches everything
from inheritance to serialization.

You’ll query your data with LINQ,
draw graphics and animation, and
learn all about classes and object
oriented programming, all through
building games, doing hands-on
projects, and solving puzzles. You’ll
become a solid C# programmer, and
you’ll have a great time along the
way!

Flip through the next few pages to
get a sneak peek at the topics you’ll
learn about!

Build over 100
different projects!
You’ll build
everything from
a card game and
a text editor to a
full-blown retro
classic arcade game.

Test your typing speed with this
“Hit the keys!” game that you’ll build
in chapter 4.

Play Go Fish! against
computer opponents in
this game you’ll build in
chapter 8.

Dozens of puzzles
and crosswords
get programming
concepts stuck in
your brain.

In Fridge Magnets, you
put the code in the right
order to get the correct
output. It’s the easy way
to learn C# syntax.

Fill in the blanks from choices
in the pool to get the code
to match the answer.

Build fully
animted
graphics
programs.
You’ll be
amazed at
how slick your
apps look once
you master
graphics!

Simulate life in a beehive with
this animated beehive simulator.

From theory to
practice, you’ll cover
everything from
object oriented
programming to file
I/O to querying your
data with LINQ.
It’s a complete C#
learning experience!

The best way to learn C# is to
write lots of code

Every few chapters you will come across a
lab that lets you apply what you’ve learned
up to that point. Each lab is designed to
simulate a professional programming task,
increasing in complexity until-at last-you
build a working Invaders game, complete
with shooting ships, aliens descending
while firing, and an animated death
sequence for unlucky starfighters. This
remarkably engaging book will
have you going from zero to 60 with
C# in no time flat.

Order yours today!
Available at fine bookstores,

and wherever

books are sold.

http://www.headfirstlabs.com/books/hfcsharp/

The fun’s just beginning!
Learn more at the Head
First C# website.

	Head First C#, 2nd Edition (the first three complete chapters)
	Table of Contents (the real thing)
	Intro. How to use this book.
	Who is this book for?
	We know what you’re thinking.
	And we know what your brain is thinking.
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend your brain into submission:
	What you need for this book:
	Read me
	The technical review team
	Acknowledgments
	Safari® Books Online

	Chapter 1. Get productive with C#. Visual Applications, in 10 minutes or less
	Why you should learn C#?
	C# and the Visual Studio IDE make lots of things easy.
	Help the CEO go paperless.
	Get to know your users’ needs before you start building your program.
	Here’s what you’re going to build.
	What you do in Visual Studio…
	What Visual Studio does for you…
	Develop the user interface.
	Visual Studio, behind the scenes
	Add to the auto-generated code.
	You can already run your application.
	Where are my files?
	Here’s what we’ve done so far.
	We need a database to store our information.
	The IDE created a database.
	SQL is its own language.
	Creating the table for the Contact List
	The blanks on the contact card are columns in our People table.
	Finish building the table.
	Insert your card data into the database.
	Connect your form to your database objects with a data source.
	Add database-driven controls to your form.
	Good programs are intuiti ve to use.
	Test drive
	How to turn YOUR application into EVERYONE’S application.
	Give your users the application.
	You’re NOT done: test your installation.
	You’ve built a complete data-driven application
	CSharpcross
	CSharpcross Solution

	Chapter 2. It’s all just code. Under the hood
	When you’re doing this…
	…the IDE does this
	Where programs come from
	The IDE helps you code.
	When you change things in the IDE, you’re also changing your code.
	Anatomy of a program
	Your program knows where to start.
	You can change your program’s entry point.
	Two classes can be in the same namespace.
	Your programs use variables to work with data.
	C# uses familiar math symbols.
	Use the debugger to see your variables change.
	Loops perform an action over and over.
	Time to start coding.
	Set up conditions and see if they’re true.
	if/else statements make decisions.
	Csharpcross
	Csharpcross Solution

	Chapter 3. Objects: get oriented!Making code make sense
	How Mike thinks about his problems
	How Mike’s car navigation system thinks about his problems
	Mike’s Navigator class has methods to set and modify routes.
	Use what you’ve learned to build a program that uses a class.
	Mike gets an idea
	Mike can use objects to solve his problem.
	You use a class to build an object.
	When you create a new object from a class, it’s called an instance of that class.
	A better solution…brought to you by objects!
	An instance uses fields to keep track of things.
	Let’s create some instances!
	Thanks for the memory.
	What’s on your program’s mind?
	You can use class and method names to make your code intuitive.
	Give your classes a natural structure.
	Class diagrams help you organize your classes so they make sense.
	Build a class to work with some guys.
	Create a project for your guys.
	Build a form to interact with the guys.
	There’s an easier way to initialize objects.
	A few ideas for designing intuitive classes
	Objectcross
	Objectcross Solution

	Want to learn more? Check out the rest of Head First C#!

