A Learner’s Guide to

Boss your R.eal-W.orld Programming
data around with Visual C# and .NET
 with LINQ
Discover the

secrets of a’

abstraction and },& i
Build a fully inheritance “FWE
functional A 5 (

retro classic
arcade game 6 \

o

Learn how

extension .

methods helped See how Jim used
Sue bend the generic collections to

rules in Objectville wrangle his data

Andrew Stellman

O REILLY" & Jennifer Greene

Head First C#

Programming Languages/Microsoft C#/.NET

What will you learn from this book?

Head First C#is a complete learning experience for programming
with C#, the .NET Framework, and the Visual Studio IDE. Built for
your brain, this book covers C# & .NET 4.0 and Visual Studio 2010,
and teaches everything from inheritance to serialization. You’ll
query your data with LINQ, draw graphics and animation, and
learn all about classes and object-oriented programming, all
through building games, doing hands-on projects, and solving
puzzles. You’ll become a solid C# programmer, and you’ll have a
great time along the way!

Understand the differente between
/(' elasses and objccﬁs.

’ Exertise Your C#
skills b\/ build'mg an

invaders game...

) ~.and ereating a role—playing
’ 9ame with deadly enemies.

Learn how to 5ch the IDE to

do your 3”‘“{-’ work for You | Inheritance
- Create a beehive Encapsulation
= simulation F _
~ program using Abstraction
m & doublc—bu‘(:‘cchCd Master the printiples of Pal b
animation. ochC‘{:—oricn-Ecd Frogramming. olymorphism

Why does this book look so different?

We think your time is too valuable to spend struggling with new
concepts. Using the latest research in cognitive science and learning
theory to craft a multi-sensory learning experience, Head First C# uses a
visually rich format designed for the way your brain works, not a text-
heavy approach that puts you to sleep.

US $49.99 CAN $62.99
ISBN: 978-1-449-38034-2

54999
UTTORIENU AT v

781449738034

Free online edition
for 45 days with
purchase of this book.
Details on last page.

Safari

Books Online

“If you want to learn
C# in depth and have
fun doing it, this is
THE book for you.”

—Andy Parke,
[fledgling C# programmer

“Head First C# will
guide beginners of all
sorts to a long and
productive relation-
ship with C# and the
.NET Framework.”

—Chris Burrows,

Developer on Microsoft’s
C# Compiler team

“Head First C# is a
highly enjoyable
tutorial, full of
memorable examples
and entertaining
exercises.”

—Joseph Albahari,

C# Design Architect at
Egton Medical Information
Systems, the UK's largest
primary healthcare

software supplier, co-author
of C# 4.0 in a Nutshell

O’REILLY"

oreilly.com
headfirstlabs.com

Advance Praise for Head First C#

“I’'ve never read a computer book cover to cover, but this one held my interest from the first page to the
last. If you want to learn C# in depth and have fun doing it, this is THE book for you.”

— Andy Parker, fledgling C# programmer

“It’s hard to really learn a programming language without good engaging examples, and this book is full
of them! Head First C# will guide beginners of all sorts to a long and productive relationship with C#
and the .NET Framework.”

—Chris Burrows, developer for Microsoft’s C# Compiler team

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very
approachable while covering a great amount of detail in a unique style. If you’ve been turned off by
more conventional books on C#, you’ll love this one.”

—Jay Hilyard, software developer, co-author of C# 3.0 Cookbook

“I’d reccomend this book to anyone looking for a great introduction into the world of programming and
C#. Irom the first page onwards, the authors walks the reader through some of the more challenging
concepts of C# in a simple, easy-to-follow way. At the end of some of the larger projects/labs, the
reader can look back at their programs and stand in awe of what they’ve accomplished.”

—David Sterling, developer for Microsoft’s Visual C# Compiler team

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its
lively style is sure to captivate readers—from the humorously annotated examples, to the Fireside Chats,
where the abstract class and interface butt heads in a heated argument! For anyone new to programming,
there’s no better way to dive in.”

—Joseph Albahari, C# Design Architect at Egton Medical Information Systems,
the UK’s largest primary healthcare software supplier,
co-author of C# 3.0 in a Nutshell

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer
wanting to jump into the C# waters. I will recommend it to the advanced developer that wants to
understand better what is happening with their code. [I will recommend it to developers who| want to
find a better way to explain how C# works to their less-seasoned developer friends.”

—Giuseppe Turitto, C# and ASP.NET developer for Cornwall Consulting Group
‘Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a
computer, and enjoy the ride as you engage your left brain, right brain, and funny bone.”
—Bill Mietelski, software engineer
“Going through this Head First C# book was a great experience. I have not come across a book series

which actually teaches you so well.... This is a book I would definitely recommend to people wanting to

learn C#”
—XKrishna Pala, MCP

Praise for other Head First books

“Kathy and Bert’s Head First fava transforms the printed page into the closest thing to a GUI you’ve ever

seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’
experience.”

—Warren Keuffel, Software Development Magazine

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status,
Head First Java covers a huge amount of practical matters that other texts leave as the dreaded “exercise
for the reader....” It’s clever, wry, hip and practical—there aren’t a lot of textbooks that can make that
claim and live up to it while also teaching you about object serialization and network launch protocols. ”

—Dr. Dan Russell, Director of User Sciences and Experience Research

IBM Almaden Research Center (and teaches Artificial Intelligence at
Stanford University)

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

—Ken Arnold, former Senior Engineer at Sun Microsystems
Co-author (with James Gosling, creator of Java),
The Java Programming Language

“I feel like a thousand pounds of books have just been lifted off of my head.”

—Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for

practical development strategies—gets my brain going without having to slog through a bunch of tired
stale professor-speak.”

—Travis Kalanick, Founder of Scour and Red Swoosh
Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-

eared, mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I
have for review is tattered and torn.”

— Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Praise for other Head First books
“I received the book yesterday and started to read it...and I couldn’t stop. This is definitely tres ‘cool.” It
is fun, but they cover a lot of ground and they are right to the point. I'm really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and co-author of
Design Patterns

“One of the funniest and smartest books on software design I've ever read.”

— Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— Ken Goldstein, Executive Vice President, Disney Online

“I ¥ Head First HITML with CSS & XHTML—it teaches you everything you need to learn in a ‘fun
coated’ format.”

— Sally Applin, UI Designer and Artist

“Usually when reading through a book or article on design patterns, I'd have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller... Bueller... Bueller...” this book is on the float
belting out “‘Shake it up, baby!””

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Other related books from O’Reilly
Programming C# 4.0
C# 4.0 in a Nutshell
C# Essentials

C# Language Pocket Reference

Other books in O’Reilly’s Head First series
Head First Java
Head First Object-Oriented Analysis and Design (OOA&D)
Head Rush Ajax
Head First HTML with CSS and XHTML
Head First Design Patterns
Head First Servlets and JSP
Head First EJB
Head First PMP
Head First SQL
Head First Software Development
Head First JavaScript
Head First Ajax
Head First Statistics
Head First Physics
Head First Programming
Head First Ruby on Rails
Head First PHP & MySQL
Head First Algebra
Head First Data Analysis
Head First Excel

Head First C#

Second Edition
Wouldn't it be dreamy
if there was a C# book that
was more fun than endlessly
debugging code? It's probably
nothing but a fantasy....
Andrew Stellman
Jennifer Greene

O’REILLY"

Beijing « Cambridge « Kdin + Sebastopol * Taipei * Tokyo

Head First C#

Second Edition

by Andrew Stellman and Jennifer Greene

Copyright © 2010 Andrew Stellman and Jennifer Greene. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (kttp:/ /my.safaribooksonline.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Cover Designers: Louise Barr, Karen Montgomery
Production Editor: Rachel Monaghan

Proofreader: Emily Quill

Indexer: Lucie Haskins

Page Viewers: Quentin the whippet and Tequila the pomeranian

Printing History:

November 2007: First Edition.
May 2010: Second Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations, Head First C#,
and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic and Visual C# are registered trademarks of
Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.
ISBN: 978-1-449-38034-2
[SB]

http://my.safaribooksonline.com
mailto:corporate@oreilly.com

This book is dedicated to the loving memory of Sludgie the Whale,
who swam to Brooklyn on April 17, 2007.

Tre !'E'E":"H'.#- -

You were only in our canal for a day,
but you’ll be in our hearts forever.

the authors

Thanks for buying our book! We really
love writing about this stuff, and we
hope you get a kick out of reading it...

This photo (and the photo of the
Qowanus Canal) by Nisha Sondhe

Andrew Stellman, despite being raised a
New Yorker, has lived in Pittsburgh fwice. The
first time was when he graduated from Carnegie
Mellon’s School of Computer Science, and then
again when he and Jenny were starting their

consulting business and writing their first book for
O’Reilly.

When he moved back to his hometown, his first
job after college was as a programmer at EMI-
Capitol Records—which actually made sense,
since he went to LaGuardia High School of
Music and Art and the Performing Arts to study
cello and jazz bass guitar. He and Jenny first
worked together at that same financial software
company, where he was managing a team of
programmers. He’s had the privilege of working
with some pretty amazing programmers over the
years, and likes to think that he’s learned a few
things from them.

When he’s not writing books, Andrew keeps
himself busy writing useless (but fun) software,
playing music (but video games even more),
experimenting with circuits that make odd noises,
studying taiji and aikido, having a girlfriend
named Lisa, and owning a pomeranian.

Andrew/-\

...because we know
you're going to have a
great time learning C#.

Jennifer Greene studied philosophy in
college but, like everyone else in the field, couldn’t
find a job doing it. Luckily, she’s a great software
engineer, so she started out working at an online
service, and that’s the first time she really got a

good sense of what good software development
looked like.

She moved to New York in 1998 to work on
software quallity at a financial software company.
She managed a team of testers at a really cool
startup that did artificial intelligence and natural
language processing.

Since then, she’s traveled all over the world to work
with different software teams and build all kinds of
cool projects.

She loves traveling, watching Bollywood movies,

reading the occasional comic book, playing PS3

games (especially LittleBigPlanet!), and owning a
whippet.

ildi it i ina together sinte {\ncy
d Andrew have been buildin software and writing about software engineering oy since L
\()—f::g ma:{: f\nl“‘)r‘;; Th:'nr (-'i:st book? Applied Software ProJeté Management, was gubl-shcd by O'Reilly in
2005. They published their first book in the Head Ficst sevies, Head First PMP, in 2007.

' ing i i oftware yro’cc{: for
They founded Stellman & Greene Consulting in 2003 +o build a r)ca"\/ nca{:.s :) -
sci::\,{i:gsns;ud\/ing herbitide exposure in Vietnam vets. When 'U\c\/ ve not bwldn.ng sa('*{:warc. or wrr[:u;g
books, they do a lot of speaking at tonfevences and meetings of software engineers, arthiteets an
project managevs.

Chetk out their bloo, Building Better Software: hitp://www.stellman—greene.com

viii

http://www.stellman-greene.com
http://www.stellman-greene.com

table of contents

Table of Contents (Summary)

Intro XXIX
1 Get productive with G#: Visual Applications, in 10 minutes or less 1
2 It’s All Just Code: Under the hood 41
3 Objects: Get Oriented: Making code make sense 85
4 Types and References: 1t’s 10:00. Do you know where your data is? 125

C# Lab 1: 4 Day at the races 169
5 Encapsulation: Reep your privates. .. private 179
6 Inheritance: Your object’s family tree 215
7 Interfaces and abstract classes: Making classes keep their promises 269
8 Enums and collections: Storing lots of data 327

C# Lab 2: The Quest 385
9 Reading and Writing Files: Save the byte array, save the world 407
10 Exception Handling: Putting out fires gets old 463
11 Events and Delegates: What your code does when you’re not looking 507
12 Review and Preview: Knowledge, power, and building cool stuff 541
13 Controls and Graphics: Make it pretty 589
14 Captain Amazing: The Death of the Object 647
15 LINQ: Get control of your data 685

C# Lab 3: Invaders 713

Leftovers: The top 11 things we wanted to include in this book 735

Table of Contents (the rea] thing)
Intro

Your brain on C#. Youre sitting around trying to learn something, but
your brain keeps telling you all that learning isn’t important. Your brain’s saying,
“Better leave room for more important things, like which wild animals to avoid and
whether nude archery is a bad idea.” So how do you trick your brain into thinking

that your life really depends on learning C#?

Who is this book for? XXX
We know what you’re thinking Xxx1
Metacognition xxxiii
Bend your brain into submission XXXV
What you need for this book XXXV1
Read me XXXVil
The technical review team XXXViil
Acknowledgments XXXIX

table of contents

Foreev

Name: Laverne Smith
Company: /2 Indusiries

Telephone: (313)s55-8129

Emall: Laverne Srth@xy2industriescom

Client: Yes Last call: 05/a/07

.ll
\

¢——
S ——

—_— A
82

odé' .NET Framework
solutions

get productive with C#
Visual Applications, in 10 minutes or less

Want to build great programs really fast?

With C#, you’ve got a powerful programming language and a valuable tool
at your fingertips. With the Visual Studio IDE, you'll never have to spend hours
writing obscure code to get a button working again. Even better, you'll be able
to focus on getting your work done, rather than remembering which method
parameter was for the name of a button, and which one was for its /label. Sound

appealing? Turn the page, and let’s get programming.

Why you should learn C# 2
C# and the Visual Studio IDE make lots of things easy
Help the CEO go paperless 4

Get to know your users’ needs before you start
building your program

What you do in Visual Studio... 8
What Visual Studio does for you... 8
Develop the user interface 12
Visual Studio, behind the scenes 14
Add to the auto-generated code 15
We need a database to store our information 18
The IDE created a database 19
\ SQL is its own language 19
J Creating the table for the Contact List 20
’ Finish building the table 25
] Insert your card data into the database 26
Connect your form to your database objects with a data source 28
Add database-driven controls to your form 30

How to turn YOUR application into EVERYONE'’S application 35

Give your users the application 36
v You’re NOT done: test your installation 37
You've built a complete data-driven application 38

Data access

table of contents

it’s all just code
Under the hood

You’re a programmer, not just an IDE user.

You can get a lot of work done using the IDE. But there’s only so far it
can take you. Sure, there are a lot of repetitive tasks that you do when
you build an application. And the IDE is great at doing those things for
you. But working with the IDE is only the beginning. You can get your
programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

When you'e doing this... 42
...the IDE does this 43
Where programs come from 44
The IDE helps you code 46
When you change things in the IDE, you’re also changing
your code 48
Anatomy of a program 50
Your program knows where to start 52
* * Two classes can be in the same namespace 59
Build this Form | Your programs use variables to work with data 60
* * C# uses familiar math symbols 62
Use the debugger to see your variables change 63
Loops perform an action over and over 65
Time to start coding 66
if/else statements make decisions 67
Set up conditions and see if theyre true 68

Every fime

me You make @ new
define 3 nam "EW Program, you
it o o N1 oyt s e

ramework ¢lasses.

A tlass contains a pigte of Your)
a
program (although some very sm Class F Fun with iffelse statements|

i).
ams ¢an have just one elass. l
peed) Method 1
statement Change tha color i e Erssbh
statement i i§ Peckgd [] Enaitie cosoe changing
SRR
A elass has one o more methods.

Your methods always have to hi/% Method 2 _

inside a ¢lass. And methods ave statement

made up oF statements — like statement

the ones you've already seen.

Xi

table of contents

objects: get oriented!
Making Code Make Sense

Every program you write solves a problem.

When you’re building a program, it’s always a good idea to start by thinking about what
problem your program’s supposed to solve. That's why objects are really useful. They
let you structure your code based on the problem it’s solving, so that you can spend your
time thinking about the problem you need to work on rather than getting bogged down in
the mechanics of writing code. When you use objects right, you end up with code that's

intuitive to write, and easy to read and change.

How Mike thinks about his problems 86
How Mike’s car navigation system thinks about his problems 87
Mike’s Navigator class has methods to set and modify routes 88
Use what you've learned to build a program that uses a class 89
Mike can use objects to solve his problem 92
You use a class to build an object 93
@ 5 When you create a new object from a class, it’s called an instance
o f that cl 94
Navigator %V/gq\of ¥ o that class
SetDestination() A better solution...brought to you by objects! 95
ModifyRoute ToAvoid() . .
ModifyRouteTolnclude() An instance uses fields to keep track of things 100
GetRoute() .
GetTimeToDestination() a 2 Let’s create some instances! 101
TotalDistance() "9 X
%> What’s on your program’s mind 103
%ng(of S
You can use class and method names to make your code intuitive 104
Give your classes a natural structure 106
E Class diagrams help you organize your classes so they make sense 108
%Vigatof ® Build a class to work with some guys 112
Create a project for your guys 113
Build a form to interact with the guys 114

When you define a tlass, you define

s methds, ot ke 3 Hheprnk There’ an easier way to initialize objects 117
defines the layout of the house

You ¢an use one blueprint 4o
make any number of houses,
and you ean use one ¢lass to
make any number of objects
xii T

table of contents

types and relerences
It’s 10:00. Do you know where your data is?

Data type, database, Lieutenant Commander Data...

it’s all important stuff. without data, your programs are useless. You
need information from your users, and you use that to look up or produce new
information to give back to them. In fact, almost everything you do in programming
involves working with data in one way or another. In this chapter, you'll learn the
ins and outs of C#'s data types, see how to work with data in your program, and

even figure out a few dirty secrets about objects (pssst...objects are data, too).

The variable’ type determines what kind of data it can store 126
A variable is like a data to-go cup 128
10 pounds of data in a 5 pound bag 129

Even when a number is the right size, you can’t just assign it to
any variable 130

When you cast a value that’s too big, C# will adjust it automatically 131
C# does some casting automatically 132

When you call a method, the arguments must be compatible

with the types of the parameters 133
Combining = with an operator 138
Objects use variables, too 139
Refer to your objects with reference variables 140
References are like labels for your object 141
If there aren’t any more references, your object gets
Dog £ido; garbage-collected 142
Dog lucky = new Dog(); - Multiple references and their side effects 144
0, » ob'}e'c‘x% Two references means TWO ways to change an object’s data 149
A special case: arrays 150
; > T): .
fido = new Dog () ; Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches! 152
Objects use references to talk to each other 154
g 0 {&\/ Where no object has gone before 155
Bop e 99 obe® . .
9 ob Build a typing game 160
lucky = null; \ \ /
T poofl— &
poor: 2

/N ot

xiii

table of.contents

C# Lab 1
A Day at the Races

Joe, Bob, and Al love going to the track, but they’re

tired of losing all their money. They need you to build a
simulator for them so they can figure out winners before
they lay their money down. And, if you do a good job,
they’ll cut you in on their profits.

The spec: build a racetrack simulator 170

The Finished Product 178

A Day at the Races

Xiv

table of contents

encapsulation
Keep your privates... private

Ever wished for a little more privacy?

Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don'’t let other objects go poking around their fields. In this chapter, you're going to

learn about the power of encapsulation. You’ll make your object’s data private, and

add methods to protect how that data is accessed.

Kathleen is an event planner

What does the estimator do?

Kathleen’s Test Drive

Each option should be calculated individually

It easy to accidentally misuse your objects

Encapsulation means keeping some of the data in a class private

Use encapsulation to control access to your class’s methods

and fields
But is the realName field REALLY protected?

Private fields and methods can only be accessed from
inside the class

Encapsulation keeps your data pristine
Properties make encapsulation easier

Build an application to test the Farmer class
Use automatic properties to finish the class
What if we want to change the feed multiplier?

Use a constructor to initialize private fields

’b/'5 4 9@(\\

Juice and sod Tancy '1
i, Pecorations
(¢5 per person + (415 per person
PR —_— VYes 5% discount on 50 silirstion
1 total cost)
number of Healthy fee)
people. ——> | Choice?
Food (425 per decorations? et 1
erson) orwal
- Ne Decorations
(4750 per
person +430
l decorating fee.lj

180
181
186
188
190
191

192
193

194
202
203
204
205
206
207

XV

table of contents

inheritance
Your object’s family tree

Sometimes you DO want to be just like your parents.

Ever run across an object that almost does exactly what you want your object to do?
Found yourself wishing that if you could just change a few things, that object would
be perfect? Well, that's just one reason that inheritance is one of the most powerful
concepts and techniques in the C# language. Before you're through with this chapter,
you’ll learn how to subclass an object to get its behavior, but keep the flexibility to
make changes to that behavior. You'll avoid duplicate code, model the real world

more closely, and end up with code that's easier to maintain.

Kathleen does birthday parties, too 216
We need a BirthdayParty class 217
Build the Party Planner version 2.0 218
When your classes use inheritance, you only need to write
your code once 226
Kathleen needs to figure out the cost of her parties, no matter what
kind of parties they are. 226
1/ Build up your class model by starting general and getting
more specific 227
How would you design a zoo simulator? 228
Use inheritance to avoid duplicate code in subclasses 229
Think about how to group the animals 231
Create the class hierarchy 232
Every subclass extends its base class 233
A subclass can override methods to change or replace methods
it inherited 238
af Any place where you can use a base class, you can use one of
its subclasses instead 239
A subclass can hide methods in the superclass 246
Use the override and virtual keywords to inherit behavior 248
Now you’re ready to finish the job for Kathleen! 252
Build a beehive management system 257
First you’ll build the basic system 258
Use inheritance to extend the bee management system 263

xvi

table of contents

interfaces and abstract classes
Making classes keep their promises

Actions speak louder than words.

Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That's where interfaces come in—they

let you work with any class that can do the job. But with great power comes great
responsibility, and any class that implements an interface must promise to fulfill all of

its obligations...or the compiler will break their kneecaps, see?

» Inheritance Let’s get back to bee-sics 270
nhermanc

*

* We can use inheritance to create classes for different types of bees 271

An interface tells a class that it must implement certain methods

. and properties 272

x Abstraction Prop
Use the interface keyword to define an interface 273

E (ati * Classes that implement interfaces have to include ALL of the
neapsutation interface’s methods 275
* * You can’t instantiate an interface, but you can reference an interface 278
polymorp]miSm Interface references work just like object references 279
‘*_ You can find out if a class implements a certain interface with “is” 280
Interfaces can inherit from other interfaces 281
Location
Name Upcasting works with both objects and interfaces 285
Exls Downcasting lets you turn your appliance back into a coffee maker 286
Description() Upcasting and downcasting work with interfaces, too 287
3 K There’s more than just public and private 291
Room Outside Access modifiers change visibility 292
Decoration Hot

Some classes should never be instantiated 295
An abstract class is like a cross between a class and an interface 296
An abstract method doesn’t have a body 299

Polymorphism means that one object can take many different forms 307

I Dining
Living Room Room

Front Yard B

Kitchen

Back Yard

xvii

table of contents

enums and collections
Storing lots of data

When it rains, it pours.

In the real world, you don’t get to handle your data in tiny little bits and pieces.
No, your data’s going to come at you in loads, piles, and bunches. You'll need
some pretty powerful tools to organize all of it, and that's where collections
come in. They let you store, sort, and manage all the data that your programs
need to pore through. That way, you can think about writing programs to work

with your data, and let the collections worry about keeping track of it for you.

Strings don’t always work for storing categories of data 328
Enums let you work with a set of valid values 329
Enums let you represent numbers with names 330
g We could use an array to create a deck of cards... 333
Lists are more flexible than arrays 336
Generics can store any type 340
~i|llr-‘,l f Collection initializers work just like object initializers 344
\J Let’s create a List of Ducks 345
ﬁ‘# / Lists are easy, but SORTING can be tricky 346
IComparable <Duck> helps your list sort its ducks 347
J //N Use IComparer to tell your List how to sort 348
} Create an instance of your comparer object 349
IComparer can do complex comparisons 350
\j - #f Overriding a ToString() method lets an object describe itself 353
Update your foreach loops to let your Ducks and Cards
print themselves 354
You can upcast an entire list using IEnumerable 356
You can build your own overloaded methods 357
The Dictionary Functionality Rundown 364
\ \ / Build a program that uses a Dictionary 365

f ~— POO‘F! — And yet MORE collection types... 377
e A queue is FIFO—First In, First Out 378
#J / AN\ A stack is LIFO Last In, First Out 379

xviii

table of

C# Lab 3
The Quest

Your job is to build an adventure game where a mighty
adventurer is on a quest to defeat level after level of
deadly enemies. You’ll build a turn-based system, which
means the player makes one move and then the enemies
make one move. The player can move or attack, and then
each enemy gets a chance to move and attack. The game
keeps going until the player either defeats all the enemies
on all seven levels or dies.

The spec: build an adventure game 386
The fun’s just beginning! 406

¥ The Quest

table of contents

reading and writing Yiles
Save the byte array, save the world

Sometimes it pays to be a little persistent.

So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that's not always enough, especially when you'’re

dealing with important information. You need to be able to save your work. In

this chapter, we’'ll look at how to write data to a file, and then how to read that

information back in from a file. You'll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

69 117 114 101 107 97 33

Eureka! —>|[]|JITIUILIT]

XX

NET uses streams to read and write data

Different streams read and write different things

A FileStream reads and writes bytes to a file

How to write text to a file in 3 simple steps

Reading and writing using two objects

Data can go through more than one stream

Use built-in objects to pop up standard dialog boxes
Dialog boxes are just another NET control

Dialog boxes are objects, too

IDisposable makes sure your objects are disposed of properly
Avoid file system errors with using statements

Writing files usually involves making a lot of decisions
Use a switch statement to choose the right option

Serialization lets you read or write a whole object all at once

INET uses Unicode to store characters and text

C# can use byte arrays to move data around

You can read and write serialized files manually, too
Working with binary files can be tricky

Use file streams to build a hex dumper

StreamReader and StreamWriter will do just fine (for now)

Use Stream.Read() to read bytes from a stream

408
409
410
411
415
416
419
420
421
427
428
434
435
442
447
448
451
453
454
455
456

table of contents

exception handling
Putting out fires gets old

Programmers aren’t meant to be firefighters.

You've worked your tail off, waded through technical manuals and a few engaging
Head First books, and you've reached the pinnacle of your profession: master
programmer. But you're still getting panicked phone calls in the middle of the night
from work because your program crashes, or doesn’t behave like it’s supposed

to. Nothing pulls you out of the programming groove like having to fix a strange bug...
but with exception handling, you can write code to deal with problems that come up.

Better yet, you can even react to those problems, and keep things running.

Brian needs his excuses to be mobile 464

When your program throws an exception, .NET generates an

Exception object. 468
All exception objects inherit from Exception 472
The debugger helps you track down and prevent exceptions

in your code 473
Use the IDE’s debugger to ferret out exactly what went wrong in the
Excuse Manager 474
Handle exceptions with try and catch 479
What happens when a method you want to call is risky? 480
Use the debugger to follow the try/catch flow 482
If you have code that ALWAYS should run, use a finally block 484

One class throws an exception, another class catches the exception 491

Bees need an OutOfHoney exception 492

Work's boring today. I want to
go scuba diving. Time to fire up
the Excuse generator.

An easy way to avoid a lot of problems:
using gives you try and finally for free 495

Exception avoidance: implement IDisposable to

do your own cleanup 496
The worst catch block EVER: catch-all plus comments 498
Temporary solutions are OK (temporarily) 499
A few simple ideas for exception handling 500
Brian finally gets his vacation... 505

XXi

table of contents

events and delegates
What your code does when you’re not looking

Your objects are starting to think for themselves.

You can’t always control what your objects are doing. Sometimes things...happen. And
when they do, you want your objects to be smart enough to respond to anything that
pops up. And that's what events are all about. One object publishes an event, other
objects subscribe, and everyone works together to keep things moving. Which is great,
until you want your object to take control over who can listen. That's when callbacks will

come in handy.

Ever wish your objects could think for themselves? 508
But how does an object KNOW to respond? 508
When an EVENT occurs...objects listen 509
Then, the other objects handle the event 511
Connecting the dots 512
The IDE creates event handlers for you automatically 516
Generic EventHandlers let you define your own event types 522
The forms you’ve been building all use events 523
One event, multiple handlers 524
Connecting event senders with event receivers 526
A delegate STANDS IN for an actual method 527
Delegates in action 528
An object can subscribe to an event... 531
Use a callback to control who’s listening 532
A callback is just a way to use delegates 534
The i i
e be A0 ety o e 22,
gets called: 9o0ing to travel 82 feet. whther to
Y We want the Pi
Ball.OnBallInPlay (70, 82) [‘ cateh this ball

- T

%

%jed

XXii

The piteher ean handle the
angle .'l:he ball was hit, ang
. the distance (90 is greater

x ﬂ\ah 82).
%e,- ob,\?!"

Pitcher.CatchBall (70, 90)

table of contents

review and preview
Knowledge, power, and building cool stuff

Learning’s no good until you BUILD something.

Until you've actually written working code, it's hard to be sure if you really get some
of the tougher concepts in C#. In this chapter, we're going to use what we’ve learned
to do just that. We’'ll also get a preview of some of the new ideas coming up soon.
And we’ll do all that by building phase | of a really complex application to make
sure you've got a good handle on what you've already learned from earlier chapters.

So buckle up...it's time to build some software!

You've come a long way, baby 542

We’ve also become beekeepers 543

The beehive simulator architecture 544

Life and death of a flower Building the bechive simulator 545
Life and death of a flower 549

Now we need a Bee class 550

P. A. H. B. (Programmers Against Homeless Bees) 554
The hive runs on honey 554

Filling out the Hive class 558

The hives Go() method 559

We’re ready for the World 560

We’re building a turn-based system 561

Here’s the code for World 562
Giving the bees behavior 568
The main form tells the world to Go() 570

We can use World to get statistics 571

Timers fire events over and over again 572

Let’s work with groups of bees 580

A collection collects...DATA 581

LINQ makes working with data in collections and databases easy 583

age = 30291

nectar = .83
PEA
Flowe ©

One final challenge: Open and Save 585

XXiii

table of contents

i 1
L
o | o

XXiv

controls and graphics
Make it pretty

Sometimes you have to take graphics into your own hands.
We’ve spent a lot of time relying on controls to handle everything visual in our applications.
But sometimes that’'s not enough—like when you want to animate a picture. And once
you get into animation, you’ll end up creating your own controls for your .NET programs,
maybe adding a little double buffering, and even drawing directly onto your forms.

It all begins with the Graphics object, bitmaps, and a determination to not accept the

graphics status quo.

You've been using controls all along to interact with your programs 590

Form controls are just objects 591
Use controls to animate the beehive simulator 592
Add a renderer to your architecture 594
Controls are well suited for visual display elements 596
Build your first animated control 599
Create a button to add the BeeControl to your form 602
Your controls need to dispose their controls, too! 603
A UserControl is an easy way to build a control 604
Your simulator’s renderer will use your BeeControl to draw

animated bees on your forms 606
Add the hive and field forms to the project 608
Build the renderer 609
You resized your Bitmaps using a Graphics object 618
Your image resources are stored in Bitmap objects 619
Use System.Drawing to TAKE CONTROL of graphics yourself 620
A 30-second tour of GDI+ graphics 621
Use graphics to draw a picture on a form 622
Graphics can fix our transparency problem... 627
Use the Paint event to make your graphics stick 628
A closer look at how forms and controls repaint themselves 631
Double buffering makes animation look a lot smoother 634
Use a Graphics object and an event handler for printing 640

table of contents

EA
OF THE OBJECT

Your last chance to DO something...your object’ finalizer 654
When EXACTLY does a finalizer run? 655
Dispose() works with using, finalizers work with garbage collection 656
Finalizers can’t depend on stability 658
Make an object serialize itself in its Dispose() 659
A struct looks like an object... 663
...but isn’t an object 663
Values get copied; references get assigned 664
The stack vs. the heap: more on memory 667

Use out parameters to make a method return more than one value 670

Pass by reference using the ref modifier 671
Use optional parameters to set default values 672
Use nullable types when you need nonexistent values 673
Nullable types help you make your programs more robust 674
Captain Amazing...not so much 677
Extension methods add new behavior to EXISTING classes 678
Extending a fundamental type: string 680

Welcome To
Objectville

Home of & tpercatfriiiens

XXV

table of contents

LINQ
Get control of your data

It’s a data-driven world...you better know how to live in it.
Gone are the days when you could program for days, even weeks, without dealing with
loads of data. But today, everything is about data. In fact, you’ll often have to work
with data from more than one place...and in more than one format. Databases, XML,
collections from other programs...it's all part of the job of a good C# programmer. And
that's where LINQ comes in. LINQ not only lets you query data in a simple, intuitive way,

but it lets you group data, and merge data from different data sources.

An easy project... 686
...but the data’ all over the place 687
LINQ can pull data from multiple sources 688
NET collections are already set up for LINQ 689
LINQ makes queries easy 690
LINQ is simple, but your queries don’t have to be 691
LINQ is versatile 694
LINQ can combine your results into groups 699
Combine Jimmy’s values into groups 700
Use join to combine two collections into one query 703
Jimmy saved a bunch of dough 704
Connect LINQ to a SQL database 706
Use a join query to connect Starbuzz and Objectville 710

o

XXVi

table of contents

C# Lab 3

Invaders

In this lab you’ll pay homage to one of the most popular,
revered and replicated icons in video game history, a
game that needs no further introduction. It’s time to
build Invaders.

The grandfather of video games 714

And yet there’s more to do... 733

Xxvii

table of contents

leftovers

The top 11 things we wanted to include
@ in this book

The fun’s just beginning!

We’ve shown you a lot of great tools to build some really powerful software with C#. But
there’s no way that we could include every single tool, technology, or technique in this
book—there just aren’t enough pages. We had to make some really tough choices about
what to include and what to leave out. Here are some of the topics that didn’t make the
cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

#1. The Basics 736
#2. Namespaces and assemblies 742
#3. Use BackgroundWorker to make your UI responsive 746
#4. The Type class and GetType() 749
#5. Equality, IEquatable, and Equals() 750
#6. Using yield return to create enumerable objects 753
#7. Refactoring 756
#8. Anonymous types, anonymous methods, and
lambda expressions 758
#9. Serializing data using DataContractSerializer 760
#10. LINQ to XML 762
5 baCkgrOUHdWOrker 1 #11. Windows Presentation Foundation 764
Did you know that C# and the NET Framework can... 766
& fleSystemWatcher 1
Favortes indoe Hep 1= x|

dperformancet:ounterl BT BRI L |

Lt THTYER] Satiy ERAMOL] AT 1 Maamum 1N
Deratin 140

e

‘e

Wrtn_ | Parere |00 | D

xxviii

how to use this book
Intro

T can't believe they
put thatin a C#
programming book!

we answer the burning a\“csbo“: book?”

n &his section ot im 3 C 4 programming bo

“Go why DID they ¥

XXiX

how to use this book

Who is this book for?

If you can answer “yes” to all of these:

@ Do you want to learn C#?

Do you like to tinker—do you learn by doing, rather than
just reading?

Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

this book is for you.

Who should probably back away from this book?

If you can answer “yes” to any of these:

Does the idea of writing a lot of code make you bored
and a little twitchy?

Are you a kick-butt C++ or Java programmer looking for
a reference book?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if C# concepts are anthropomorphized?

this book is not for you.

[Note from mavketing: this book is
for anyone with a evedit card.J

XXX intro

the intro

We know what you're thinking.

“How can this be a serious C# programming book?”
“What’s with all the graphics?”

“Can I actually learn it this way?” Your b

And we know what your brain is thinking. [

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with

the brain’s real job—recording things that matter. It doesn’t bother
saving the boring things; they never make it past the “this is obviously
not important” filter.

How does your brain £now what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

Great. Only
700 more dull,
dry, boring pages.

And that’s how your brain knows. ..

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. \(ou\’ \Jva': oeth Do
You're studying. Getting ready for an exam. Or trying to learn some ™S on kW
tough technical topic your boss thinks will take a week, ten days at .

the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never have posted those “party” photos on your Facebook page.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I'm
registering on the emotional Richter scale right now, I really do want
you to keep this stuff’ around.”

you are here » XXXi

how to use this book

We think of a “Head First’ reader as a learner.

So what does it take to learn something? First, you have to getit, then make sure
you don’t forgetit. It's not about pushing facts into your head. Based on the
|atest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than texton a page. We know what turns your brain on.

some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the

words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to

solve problems related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don't take yourself too seriously. Which would you pay more attention to:a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you

actively flex your neurons, nothing much happens in your head. A reader

has to be motivated, engaged, curious, and inspired to solve problems, draw

conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both

sides of the brain and multiple senses.

Get—and keep—the reader’s attention. we've all had the”l really want to learn this but

| can't stay awake past page one” experience. Your brain pays attention to things that are out of

the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough,

technical topic doesn't have to be boring. Your brain will learn much more quickly if

af

it's not.

L

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember what

you care about. You remember when you feel something. No, we're not talking

heart-wrenching stories about a boy and his dog. We're talking emotions like

surprise, curiosity, fun,“what the...?", and the feeling of “l Rule!” that comes when

you solve a puzzle, learn something everybody else thinks is hard, or realize you

know something that “I'm more technical than thou” Bob from engineering doesn't.

XXXii intro

the intro

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

T wonder how I
can trick my brain
info remembering

Most of us did not take courses on metacognition or learning theory when we were this stuff
is stuff...

growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to ©
build programs in C#. And you probably don’t want to spend a lot of time. If you

want to use what you read in this book, you need to remember what you read. And
for that, you’ve got to understand it. To get the most from this book, or any book or
learning experience, take responsibility for your brain. Your brain on #us content.

The trick is to get your brain to see the new material you're learning
as Really Important. Crucial to your well-being. As important as

a tiger. Otherwise, you're in for a constant battle, with your brain
doing its best to keep the new content from sticking.

So just how DO you get your brain to treat C# like
it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way.

The slow way is about sheer repetition. You obviously know that
you are able to learn and remember even the dullest of topics

if you keep pounding the same thing into your brain. With enough
repetition, your brain says, ““This doesn’t fee/ important to him, but he keeps looking
at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording;

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

you are here » XXXiii

how to use this book

Here’s what WE did: tho ol e

defines the layout. of the house.

We used pictures, because your brain is tuned for visuals, not text. As far as your
brain’s concerned, a picture really s worth a thousand words. And when text and
pictures work together, we embedded the text i the pictures because your brain
works more effectively when the text is within the thing the text refers to, as opposed
to in a caption or buried in the text somewhere.

nd You °“Ur
We used redundancy, saying the same thing in different ways and with different media types, ™" e X m
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain

is tuned to pay attention to the biochemistry of emotions. That which causes you to _feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used mudltiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, and someone else just

wants to see an example. But regardless of your own learning preference, everyone Q BULLET POINTS

benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you

engage, the more likely you are to learn and remember, and the longer you can stay focused.

Since working one side of the brain often means giving the other side a chance to rest, you

can be more productive at learning for a longer period of time. Fll‘ESlle Chats

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments. ""f

We included challenges, with exercises, and by asking questions that don’t always have

a straight answer, because your brain is tuned to learn and remember when it has to work at
something, Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the 7ght things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

XXXiV intro

Cut +this out and stiek it

on Your "C‘C‘rigera-bor.

the intro

225) Here’s what YOU can do to bend
your brain into submission

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

@ Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really s asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering,

@ Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity «/z/elearning
can increase the learning.

@ Read the “There are No Dumb Questions”

That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Make this the last thing you read before

bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens g/ you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

(B Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

®

Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won'’t learn faster by trying to shove more in, and
you might even hurt the process.

Feel something.

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Write a lot of software!

There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to do
throughout this book. Coding is a skill, and the only
way to get good at it is to practice. We’re going to
give you a lot of practice: every chapter has exercises
that pose a problem for you to solve. Don’t just skip
over them—a lot of the learning happens when

you solve the exercises. We included a solution to
each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged on
something small.) But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

you are here » XXXV

how to use this book

What you need for this book:

We wrote this book using Visual C# 2010 Express Edition, which uses C# 4.0 and .NET Framework 4.0. All of
the screenshots that you see throughout the book were taken from that edition, so we recommend that you use it.
If you’re using Visual Studio 2010 Professional, Premium, Ultimate or Test Professional editions, you'll see some
small differences, which we’ve pointed out wherever possible. You can download the Express Edition for free
from Microsoft’s website—it installs cleanly alongside other editions, as well as previous versions of Visual Studio.

— SETTING UP VISUAL STUDIO 2010 EXPRESS EDITION

= |t's easy enough to download and install Visual C# 2010 Express Edition. Here’s the link to the Visual Studio
2010 Express Edition download page:

http://www.microsoft.com/express/downloads/

You don’t need to check any of the options in the installer to get the code in this book to run, but feel free to if

you want.
| 23 Mmoo Vimsal €0 2018 Enpeess Setup — tomi-ienl ‘(:
e = : ’ \/ou absolu‘tcl mus‘f‘, use an
w"’:‘j‘ﬁl C* 200 older version O\CyVisual Studio,
—— C# or the NET Framework,
et S e 200 e s ok | (44 o S 134 then please keep in mind that
5 S e g i Vo Sk e et o YOu'“ tome atross ﬁoyids in this
book that won't be tompatible
with your version. The CH# team
at Micvosoft has added some
pretty cool features 1o the
languagc- KCCP in mind that
if you've not using the latest
e version, there will be some tode
= =— in this book that won't work.

= Download the installation package for Visual C# 2010 Express Edition. Make sure you do a complete
installation. That should install everything that you need: the IDE (which you'll learn about),.NET Framework

4.0, and other tools.
= Once you've got it installed, you'll have a new Start menu option: Microsoft Visual C# 2010 Express Edition.
Click on it to bring up the IDE, and you're all set.

XXXVi intro

http://www.microsoft.com/express/downloads/

Read me

This 1s a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at
that point in the book. And the first time through, you need to begin at the beginning,
because the book makes assumptions about what you've already seen and learned.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the
book. Some of them are to help with memory, some for understanding, and some to
help you apply what you've learned. Don’t skip the written problems. The pool
puzzles are the only things you don’t save to do, but they’re good for giving your brain a
chance to think about twisty little logic puzzles.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see
some of the same concepts come up more than once.

Do all the exercises!

The one big assumption that we made when we wrote this book is that you want to
learn how to program in C#. So we know you want to get your hands dirty right away,
and dig right into the code. We gave you a lot of opportunities to sharpen your skills

by putting exercises in every chapter. We’ve labeled some of them “Do this!”—when
you see that, it means that we’ll walk you through all of the steps to solve a particular
problem. But when you see the Exercise logo with the running shoes, then we’ve left
a big portion of the problem up to you to solve, and we gave you the solution that we
came up with. Don’t be afraid to peek at the solution—it’s not cheating! But you’ll
learn the most if you try to solve the problem first.

We’ve also placed all the exercise solutions’ source code on the web so you can download
it. You’ll find it at http://www.headfirstlabs.com/books/hfcsharp/

The “Brain Power” exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises you will find hints to point you in the
right direction.

the intro

We use a lot of diagrams to
make tough tontepts easier

to w\dcrs{;&hd' Q

@®
ent @

VK "7/5

“gent

You should do ALL of the
“Charpen Yyour pent

17 activities

t@fﬁl your pencl

Activities marked with the
Exereise (running shoe) loao
are veally im / ’

iy ,Z '16 Portant! Don’t

N)
1T You're serious

about 'earnins C#.

Exegcise

logo,
I£ you see the Pool Puzzle 90,
H\Z ZL{'NH:\/ is o?{:'lonal, and i
You don't like 4wisty logie, you
won't like these either.

7
7

you are here » XXXVii

http://www.headfirstlabs.com/books/hfcsharp/

the review team

The technical review team
Lisa Kellner

for
We've espetid 5\’3‘:&:}5 o
O \“s-\\gh\\c\;zu\ Ceedbatk:

ditulovs

Not Ficfu\rcd (but Jus‘f,
as awesome are the
veviewers from the fivst
jdition): Joe Albahavi,

. . ay Hilyard, Aayam
David S{',c\rlmg Singh, j/rhcodovr;/, Peter
Ritehie,Bill Meitelski
Andy Pavker, Wayne
Bradnc\/, Dave Murdoth,
B\ridgc{:{:c Julie Landers.
And syccial thanks
to Jon Skeet for his
‘{:horough veview and
suggestions for the first
cdi‘[:ion!

David \r'ca“y hcl?cd us out,
especially with some very
neat [DE tricks.

Technical Reviewers:

When we wrote this book, it had a bunch of mistakes, issues, problems, typos, and terrible arithmetic errors. OK, it
wasn’t quite that bad. But we’re still really grateful for the work that our technical reviewers did for the book. We
would have gone to press with errors (including one or two big ones) had it not been for the most kick-ass review team

EVER....

First of all, we really want to thank Chris Burrows and David Sterling for their enormous amount of technical
guidance. We also want to thank Lisa Kellner—this is our sixth book that she’s reviewed for us, and she made a huge
difference in the readability of the final product. Thanks, Lisa! And special thanks to Nick Paladino. Thanks!

Chris Burrows is a developer at Microsoft on the C# Compiler team who focused on design and implementation of
language features in C# 4.0, most notably dynamic.

David Sterling has worked on the Visual C# Compiler team for nearly 3 years.

Nicholas Paldino has been a Microsoft MVP for NET/C# since the discipline’s inception in the MVP program and has
over 13 years of experience in the programming industry, specifically targeting Microsoft technologies.

XXXViii intro

Acknowledgments

Our editor:

We want to thank our editors, Brett McLaughlin and
Courtney Nash, for editing this book. Brett helped with a lot of

the narrative, and the comic idea in Chapter 14 was completely his,
and we think it turned out really well. Thanks!

Sanders Kleinfeld

/—>

Brett MtLaughlin

DN

Cowfnc\/ Nash

Lou Barr is an amazing graphic designer who went above and beyond

on this one, putting in unbelievable hours and coming up with some pretty
amazing visuals. If you see anything in this book that looks fantastic, you can
thank her (and her mad InDesign skillz) for it. She did all of the monster and
alien graphics for the labs, and the entire comic book. Thanks so much, Lou!
You are our hero, and you’re awesome to work with.

There are so many people at O’Reilly we want to thank that we hope we
don’t forget anyone. Special thanks to production editor Rachel Monaghan,
indexer Lucie Haskins, Emily Quill for her sharp proofread, Ron
Bilodeau for volunteering his time and preflighting expertise, and Sanders
Kleinfeld for offering one last sanity check—all of whom helped get this
book from production to press in record time. And as always, we love Mary
Treseler, and can’t wait to work with her again! And a big shout out to our
other friends and editors, Andy Oram and Mike Hendrickson. And if
you’re reading this book right now, then you can thank the greatest publicity
team in the industry: Marsee Henon, Sara Peyton, Mary Rotman,
Jessica Boyd, Kathryn Barrett, and the rest of the folks at Sebastopol.

you are here »

the intro

XXXiX

safari books online

Safari® Books Online

S a f a rl Safari Books Online is an on-demand digital library that lets you easily search over 7,500

. technology and creative reference books and videos to find the answers you need quickly.
Books Online

With a subscription, you can read any page and watch any video from our library online. Read books on your cell
phone and mobile devices. Access new titles before they are available for print, and get exclusive access to manuscripts
in development and post feedback for the authors. Copy and paste code samples, organize your favorites, download
chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital access
to this book and others on similar topics from O’Reilly and other publishers, sign up for free at
hitp://my.safaribooksonline.com/?portal=oreilly.

x| intro

http://my.safaribooksonline.com/?portal=oreilly

1 get Prgducti\/e With c#

Visual Applications, in 10
minutes or less

Don't worry, Mother. With Visual

Studio and C#, you'll be able to

program so fast that you'll never
burn the pot roast again.

Want to build great programs really fast?
With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you'll be able
to focus on getting your work done, rather than remembering which method
parameter was for the name of a button, and which one was for its /abel. Sound

appealing? Turn the page, and let’s get programming.

this is a new chapter

c# makes it easy

#
Why yﬂy ShOUId lear" c & The [DE—or Visual Studio Integrated

Development Environment—is an

C# and the Visual Studio IDE make it easy for you to get to the business ,

of writing code, and writing it fast. When you’re working with C#, the important part of working in CH#. It's

IDE is your best friend and constant companion. a program that hCIES You edit your
tode, manage Your files, and publish your

’ ?ro‘)cc{,&
Here’s what the IDE automates for you...
Every time you want to get started writing a program, or

Jjust putting a button on a form, your program needs a
whole bunch of repetitive code.

Private voiq itialij
! InltlallzeComponent()

this.button] =
: = new s ;
/t?ls - SuspendLayout () gscem'Wl“dOW&Forms.Eutcon 0

// butt
7 uttonl

i tonl.Location =
thls.buttonLName = ‘r‘)butgsxl

this.buttonl . g; = ystem.Drawing.size
-Size new Sys i i 75, 23
. (75,)i

,Sl?/stem.DrawingA Point (105, s6);

this.button] T,
i -TabIndex =
!t:ﬁ}&guttonl.Text =es‘(button1"
is. i :
this.bﬁgé:g;l%.gf_e‘usualstyleBackColor = true;
o «Click += ney System.EventHandTér(th' b
1s.buttonil Click) ;

using Systeé i
i system. o
\r)\zrlnre]gpage A’NewAProgram 7

thiSAAutoScal Di .

this Autoscalemeqe S10MS = new System.p .
tt:hls.Clientsiigogen;wsgStim.Windows . Foréiwiﬁgsiéiﬂw' 8E)
i s i . : .
hiSISontrols Add (this. Burconrr o i"9-5ize (292, 267y, 0 FONts
1”,‘ v .

Program

static class

{)/ <summary> ntry point for the application.

/// The main €
/| </summary>
sTAThread] .

étatic void Main(

i tylesOi | 1se) i

tion'EnagliggiﬁiﬁiTgxtRender1ngDefBUIt(fa
{o)

(new Forml 0)i

Applicatl
Agplicatlon-SEt
Application.Run

=<
It takes all £his tode just 4o dray,

a button Tn a form. Addin5 a few
more visual elements 4o the £
tould take I_(_) {:imas much :::;c.

What you get with Visual Studio and C*...

With a language like C#, tuned for Windows
programming, and the Visual Studio IDE, you can focus

on what your program is supposed to do immediately: T
he vesult is
a better

’ooking aPP’icafion thaé

'l:aks ss T
/\ \lc 'C f'"‘cfowri{;c,

0 ’
us Your Program = | =

0‘6\ NET Framework
Fore " solutions
| e’ get starded|

the NET Qvagcywovk, — = Q i
CH#, the - Howgood? () Good () Better @ Baet

and the Visual Studio IDE

have Yrc—bu\\’c s{',vud.:wes \; -
that handle the tedious . J
tode that's Ya\r{; of mos

‘ta ks. \/ All gt =

YrogYaV“’"‘“S s

2 Chapter 1

get productive with c#

C# and the Visval Studio IPDE make
lots of things easy

When you use C# and Visual Studio, you get all of
these great features, without having to do any extra

work. Together, they let you:

o

Build an application, FAST. Creating programs in C# is a snap. The
language 1s powerful and easy to learn, and the Visual Studio IDE does a lot
of work for you automatically. You can leave mundane coding tasks to the IDE
and focus on what your code should accomplish.

Design a great looking user interface. The Form Designer in the
Visual Studio IDE is one of the easiest design tools to use out there. It
does so much for you that you’ll find that making stunning user interfaces
is one of the most satisfying parts of developing a C# application. You can
build full-featured professional programs without having to spend hours
writing a graphical user interface entirely from scratch.

Create and interact with databases. The IDE includes an easy-to-use
interface for building databases, and integrates seamlessly with SQL Server
Compact Edition and many other popular database systems.

Focus on solving your REAL problems. The IDE does a lot for you, but
gyou are still in control of what you build with C#. The IDE just lets you focus on
your program, your work (or fun!), and your customers. But the IDE handles all the
grunt work, such as:

* Keeping track of all your projects
* Making it easy to edit your project’s code
* Keeping track of your project’s graphics, audio, icons, and other resources
* Managing and interacting with databases
All this means you’ll have all the time you would’ve spent doing this routine

programming to put into building killer programs.

'\ You've going to see exattly

what we mean next.

you are here »

3

the boss needs your help

Help the CEQ go paperless

The Objectville Paper Company just hired a new CEO. He loves hiking,
coffee, and nature...and he’s decided that to help save forests, he wants
to become a paperless executive, starting with his contacts. He’s heading
to Aspen to go skiing for the weekend, and expects a new address book
program by the time he gets back. Otherwise...well...it won’t be just the
old CEO who’s looking for a job.

- \/ou d better ‘(:md 3 way
4 to 56{: his data onto the

« Lave i
Name: me Smith Foger company CEO s la?b" ﬂka

Company: XYZ \ndustries

Telephone: (313)s55-8139
Email: La\/erne.Sm'\’(‘n@xgzmdus{r'\esoom

Client: ves Last call: 05/a6/07

. u
\
LS

Fﬂ—

4 Chapter 1

get productive with c#

Get to know your users’ needs before
you start building your program

Before we can start writing the address book application—or any
application—we need to take a minute and think about who’s going to
be using it, and what they need from the application.

@ The CEO needs to be able to run his address book program
at work and on his laptop, too. He’ll need an installer to
make sure that all of the right files get onto each machine.

The CEO wants to be able to vun his
o £ Program on his desktop and laptop, so

an installer is a must.

Think about your
users and their
needs hefore you
start Luil«ling the
code, and they’ll

@ The Objectville Paper Company sales team wants to

access his address book, too. They can use his data to Le llaPPy Wltlt tlle
build mailing lists and get client leads for more paper
sales.

final proJuct once

9
The CEQ figures a database wou%d be the best way for you re Jo ﬂe!
everyone in the company to see his data, and then he

can just keep up with one copy of all his contacts.

We alveady knov t:a:, \é;:;:s\cf#
{ ['}
makes working Wi :
easy: Having t,ov\{:at,é,sE g\ :,\d
database lets the e
Leam all aceess

he sales e Jd,me,;/]
information ever thouy o

only one eopy

you are here » 5

here’s your goal

Heres what youte going to build

You're going to need an application with a graphical user
interface, objects to talk to a database, the database itself, and
an installer. It sounds like a lot of work, but you’ll build all of
this over the next few pages.

Here’s the structure of the program we’re going to create:

ith 8 th at ; L
. W.\ dO‘NS AQOYm WY In cy—acfs ;
Youll be louilding 3 " s on it he database. i
of visudl tontrol
bunth (SELECT command ‘
NET Visual Objects NET Database | inseRT °°mmand_]
Objects | uPDATE command |

l DELETE command)

7

\’?lbject

P
Bind®

r object

N
N
Tab\ep’é

!

Oator object

’5.\\
Binding™
)
Q
Database &
diagram 5

Eath of these obiects Rz==:
rc\wcsm{;s 3 control Tt
on the addvess book \ 7 :
form well ereate: We'll need objects 4o Lalk 4,

our .'Eablcs, 3 diagram 4o let our
application know what the database

strueture ;
6 Chapter1 €15 and move.

Tge data is all stored i, a table in
a S®L Server Compact database.

Y

Pata Storage

Table

Stored
Procedures

<

Heve's the database ikself, whieh
Visual Studio will help us treate
and maintain.

get productive with c#

Onte the ?vogram's built,
it'll be packaged up into a

Windows ins{a“"Z

Peployment Package

Program
file
The sales
patabase departmey, £ will
\i?' Jost meed 4,

Point and eiok
to install ang
hen use his

Program.

you are here » 7

let’s gef started

What you do in Visval Studio...

Go ahead and start up Visual Studio, if you haven’t already. Skip over the start page and select New Project from

the File menu. Name your project “Contacts” and click OK. There are several project types to choose from. Select

Windows Forms Application and choose “Contacts” as the name for your new project by entering it in the

“Name” box at the bottom of the “New Project” window.

| B gt 5 ——
EEETE . - -1 [5
[T —— = ———_—_—_—_—. S
sy gif| Wi P dgpboaton Vil O Trpe: Wituss CF
it e g s e it & .
TN o Things may
i look a bit
Mol WP Browner dpglcation Vil G0 Watc}l].t' dlffe'ienrg in
m Caseche hpoltor Vol o
] e i This is what the “New

What Visual Studio does for you...

As soon as you save the project, the IDE creates Forml . cs, Forml.
Designer.cs, and Program. cs file, when you create a new project. It
adds these to the Solution Explorer window, and by default, puts those files in
My Documents\Visual Studio 2010\Projects\Contacts\.

This file tontains the C# This has the tode

tode that defines the that starts vwp
behavior of the Lorm. the Yw-ogvam and
\}/ displays Lhe form.
c# g l]
Form1.cs Program cs

Project” window looks

like in Visual Studio 2010
Express Edition. If you’re
using the Professional or
Team Foundation edition, it
might be a bit different. But
don’t worry, everything still
works exactly the same.

Make sure that you save your project
as soon as gou ereate it by selecting
“Save All” from the File menu—that'll
save all of the project files out 4o
the folder. |£ You sclcc{: “Save”, it

\)us{: saves the one \/ou ve working on.

The ¢ode that
defines the form
and its ochc'l;s

lives hcy-c/
i C#]

Form1.Designer.cs

\ Visual S{:udw eveates all theee of _———

8 Chapter 1 these files automatically.

get productive with c#

rpen your penc

Below is what your screen probably looks like right now. You should be able to figure out the

: purpose of most of these windows and files based on what you already know. Make sure you open

the Toolbox and Error List windows by choosing them from the View >> Other Windows menu.
Then in each of the blanks, try and fill in an annotation saying what that part of the IDE does. We've
done one to get you started.

Thi £ ’ ike thi :

;l;...'i '690,53" haSBu{;fom ' Your IDE doesn't loo“k exac{:l\/ like this We've blown up this

1 h a :l;..a.fl")’ ‘l:o wha{: . . yucfwc, \/ou tan sclcc{’, Resc{: Window . bel so You

CuYV‘Ch‘H " d L)’ a8 V‘c . La\/ou{:" ‘("V'om ‘H’\c Window window below \l

............ YomamfhchE menu have move vroom.

EdEEDRGE

wOERL

£ You don't see the
Evvor List or Toolbox,
thoose them -From View

[P -

EHETHES
2 : T
-
1
T

..................... ::::-. .
>> O'thcr W‘W\dOWS. -t we | IR ..eeee-

e [
[e
b L
ekl s

S —— -
e

e e i

Solution Explorer
& = E
EQ Solution 'Contacts' (1 project)
4 [Contacts
[» [=d| Properties
[[+=] References
5] Forml.cs
] Program.cs

know your ide
pen your perc
‘@1 Solution
This toolbar has buttons

that apply o what You're
Cu\rv-cn'Uy doing in the |DE.

We've filled in the annotations about the different sections of the Visual
Studio C# IDE. You may have some different things written down, but you
should have been able to figure out the basics of what each window and
section of the IDE is used for.

This is the A P

+oolbox. [t —Ean i e et et

has a bunch of || T ST il M-
D reiing b srtin

Oy B
Ftbiny

[-
B v
b
weblndea

visual controls
that you ean |
drag onto your |l & 2

form.

L
Siem | B

Jacmar

I Te——

This window shows
properties of the
tonkrol turvently
selected on Your

form.

2

Wi
Trizine

E
i

s

This Bvvor List window sho;us
ou when theve are evvors
our tode. This pane will show
lots of diagnos{:ic info about

your program-

See this little
pushpin icon?

If you click it,
you can turn
auto-hide on or
off. The Toolbox
window has
auto-hide turned
on by default.

Solution Explorer
& 2| E

I,;; Solution 'Contacts' (1 project)

4 | Contacts
> [=d Properties

Th
(4 FOV‘MI.CS and PVOSVQM-CS i =i References
b

Files that Lhe IDE treated ——

oF You whep, You added £},

new FV‘{)'CC{Z appear i
Solution Exploy-zhr " the

—eﬁ

10 Chapter 1

Forml.cs

@

You €an swj
witeh
Dromics between

iles using the Solution
Explover i the DE.

BL_\

Q: So if the IDE writes all this code
for me, is learning C# just a matter of
learning how to use the IDE?

A: No. The IDE is great at automatically
generating some code for you, but it can
only do so much. There are some things it's
really good at, like setting up good starting
points for you, and automatically changing
properties of controls on your forms. But
the hard part of programming—figuring out
what your program needs to do and making
it do it—is something that no IDE can do
for you. Even though the Visual Studio IDE
is one of the most advanced development
environments out there, it can only go so far.
It's you—not the IDE—who writes the code
that actually does the work.

Q; | created a new project in Visual
Studio, but when | went into the “Projects”
folder under My Documents, | didn’t see it
there. What gives?

- When you first create a new project in
Visual Studio 2010 Express, the IDE creates
the project in your Local Settings\
Application Data\Temporary
Projects folder. When you save the
project for the first time, it will prompt you
for a new filename, and save it in the My
Documents\Visual Studio
2010\Projects folder. If you try to
open a new project or close the temporary
one, you'll be prompted to either save or
discard the temporary project. (NOTE: The
other, non-Express versions of Visual Studio
do not use a temporary projects folder. They
create the project directly in Projects!)

Q: What if the IDE creates code I don’t
want in my project?

A: You can change it. The IDE is set up to
create code based on the way the element
you dragged or added is most commonly

therejare no
Dumb Questions

used. But sometimes that's not exactly what
you wanted. Everything the IDE does for
you—every line of code it creates, every file
it adds—can be changed, either manually by
editing the files directly or through an easy-
to-use interface in the IDE.

Q; Is it OK that | downloaded and
installed Visual Studio Express? Or do

| need to use one of the versions of
Visual Studio that isn’t free in order to do
everything in this book?

- There’s nothing in this book that you
can’t do with the free version of Visual Studio
(which you can download from Microsoft's
website). The main differences between
Express and the other editions (Professional
and Team Foundation) aren’t going to get
in the way of writing C# and creating fully
functional, complete applications.

Q: Can | change the names of the files
the IDE generates for me?

- Absolutely. When you create a new
project, the IDE gives you a default form called
Forml (which has files called Forml . cs,
Forml.Designer.cs,and Forml.
resx). But you can use the Solution
Explorer to change the names of the files to
whatever you want. By default, the names of
the files are the same as the name of the form.
If you change the names of the files, you'll
be able to see in the Properties window that
the form will still be called Form1. You can
change the name of the form by changing the

“(Name)” line in the Properties window. If you

do, the filenames won't change.

C# doesn't care what names you choose for
your files or your forms (or any other part of
the program), although there are a few rules
for this. But if you choose good names, it
makes your programs easier to work with.
For now, don’t worry about names—we'll talk
a lot more about how to choose good names
for parts of your program later on.

get with c#

Q- I’'m looking at the IDE right now,
but my screen doesn’t look like yours! It’s
missing some of the windows, and others
are in the wrong place. What gives?

A: If you click on the “Reset Window
Layout” command under the “Window” menu,
the IDE will restore the default window layout
for you. Then you can use the “View >>
Other Windows” menu to make your screen
look just like the ones in this chapter.

Visual Studio will

generate code
you can use as a
starting point for
your applications.

Malcing sure

the application
does what it's
suppose(l to do
1s entirely up to

ou.
you

11

a picturebox is worth a thousand words

Pevelop the user interface

Adding controls and polishing the user interface is as easy as
dragging and dropping with the Visual Studio IDE. Let’s add a
logo to the form:

0 Use the PictureBox control to add a picture.
Click on the PictureBox control in the Toolbox, and drag it
onto your form. In the background, the IDE added code to
Forml.Designer.cs for a new picture control.

If you don’t see

the toolbox, try Forml.cs [Designl® =
hovering over the - All Windows Forms -
word “Toolbox” a Common Controls i 7
that shows up R Pointer RERE [ESE ECR =5
in the upper (%] Button
left-hand corner Checkio .
of the IDE. Ifit's §8 CheckedListBa réh
not there, select B CombuBex
“Toolbox” from "'. DateTimePicker
the View menu to A Labd r
make it appear. A LinkLabel
35 Listibo _
3 ListView 1 -
. MaskedTextBon
T MonthCalendar
=, Hntifyicon

2 \ o - .

4 PictureBlon —

= RN

Rali

‘_,4 RichTextBox

wl TeaBlox

Evcry Lime You make
: a thange 10 3 ¢ '
properties on the form, the 5c:odc in E:f:;l)

esigner.¢s is getting changed by the [DE.

g It’s OK if you’re not a pro at user
cH 1 interface design.
: Re ax We’ll talk a lot more about designing

Form1.Desianer.c : good user interfaces later on. For now,
orm1.Designer.cs i
9 i just get the logo and other controls on your form, and

i worry about behavior. We’ll add some style later.

12 Chapter 1

get productive with c#

.NET Visual NET Data Storage Deploywment
Objects Patabase* Package
Objects =
fou are Here —»Qg . — [
- = LN
© 0 Y| Y| @&
= T o
Q Set the PictureBox to Zoom mode.
Every control on your form has properties that you can
set. Click the little black arrow for a control to access
these properties. Change the PictureBox’s Size property this Lle
to “Zoom” to see how this works: C\"C\; on T to attess
(a - 1 black arvow :
C i Form1 lE_'E_Il_V/ X Lov\{-’vo\,s Yvovc\"bcs.
ou tan dlsouse the : =8
‘:éro\’cv{:iesn window in ? = @m Tuls
the lDE {o set the [u] Choose Image...
Giee property. The ey Soe o, R]
v ck arvow is o IMermal
e e o ke Deck e suetchimage
Jus Auluue
it easy to aceess | Lenterlmage
the most tommon
propevties of any
control- K Choose
¢ Zo,
the Picfure 52 that
will ¢p, ange {:OOx -Framc
size of §) - Mateh 4,
I

Then eliek “Choose [maqe”

age” {to byi
the sclccf Resouree diaalog box ‘::5 :u‘: /
an import 3 Jogg) resourte. !

e Download the Objectville Paper Company logo.
Download the Objectville Paper Co. logo from Head First Labs (http://
www.headfirstlabs.com/books/hfcsharp) and save it to your hard drive.
Then click the PictureBox properties arrow, and select Choose Image. You’ll see a
Select Resources window pop up. Click the “Local Resource” radio button to enable the
“Import...” button at the top of the form. Click that button, find your logo, and you’re all set.

e Forml ¢ the OPC logos

\ I (/ B \::; the P'\L{\AYCBW“

\ = .
f’f :9.. — /l zooms 1o oet the size

you are here » 13

http://www.headfirstlabs.com/books/hfcsharp
http://www.headfirstlabs.com/books/hfcsharp

conserving c#’s natural resources

Visval Studio, behind the scenes

Every time you do something in the Visual Studio IDE, the IDE is
writing code for you. When you created the logo and told Visual

Studio to use the image you downloaded, Visual Studio created a resource

and associated it with your application. A resource is any graphics file,
audio file, icon, or other kind of data file that gets bundled with your
application. The graphics file gets integrated into the program, so that

when it’s installed on another computer, the graphic is installed along with

it and the PictureBox can use it.

When you dragged the PictureBox control onto your form, the IDE
automatically created a resource file called Forml . resx to store that
resource and keep it in the project. Double-click on this file, and you’ll be
able to see the newly imported image.

Solution Explorer

a2

; Selution 'Contacts' (1 project)
57 Contacts

=d| Properties

< References

5] Forml.cs
%9 Forml.Designer.cs

to Forml.cs to

to “Strings”

>
>

F]

Forml.resx =

|- Images = |] Add Resource =

This image is now @ vesource of the
Contatt List awllca{lon

Go to the Solution Explorer and click on the “expand” icon next

expand it (if it’s not already expanded). This

will display two files: Forml.Designer.cs and Forml.
resx. Double-click on Forml . resx, click on the arrow next

, and select “Images” from the drop-down list (or hit
Ctrl-2) to see the logo that you imported. That file is what links it
to the PictureBox, and the IDE added code to do the linking.

l‘(: ou those the other
“lm oY'E bu‘{:’{‘ph ‘C\'om
{:hc Seleet Resouree
dialog on the last page,

Formil.cs [Design]

:“‘Q Forml.res: s

#] Program.cs
Form1.Designer.cs

B

Form1.cs

[

c#

\‘\C \\C
Yeve ave ¥
vcma\ Studio ——=)

preaked eate”

Program.cs

14 Chapter 1

Form1.resx

‘[:hcan \/owr lmagc will
show up in the Resourtes
folder in the Solution
Explorer instead. Don't
wow\/—'us{; 90 back to
Seleet Resourtes, thoose
“Lotal Resourte,” and
\rcm\?ov{‘, ‘{')\c lmagc m{;o
the vesourtes, and it'll
show up here.

o—

When you imported the image, the
IDE eveated this file for You.

H: COn‘Eams all 0‘(" '{:hc resourtes
(5\ra‘>hlcs, video, audio and other
stored data) assotiated with Forml.

&

get productive with c#

Add to the auto-generated code

The IDE creates lots of code for you, but you'll still want to get
into this code and add to it. Let’s set the logo up to show an About
message when the users run the program and click on the logo.

When you’re editing a form in the IDE, double-clicking on any of
the toolbox controls causes the IDE to automatically add code to
your project. Make sure you’ve got the form showing in the IDE,
and then double-click on the PictureBox control. The IDE will
add code to your project that gets run any time a user clicks on the
PictureBox. You should see some code pop up that looks like this:

public partial class Forml : Form

{
public Forml () When \You double—¢licked on the P'IL‘[:chox tontrol,
{ the [DE ¢veated this method. [t will vun every time

a user tlicks on the logo in the vunning application.
InitializeComponent () ;

This method name gjves You 3

good idea about when ijdruns:
e | :

s on
private void pictureBoxl Click(object sender, EventArgs e) hen someone cliek

K__/ Pic’ccho% Lon{'xo\-
{

MessageBox.Show (“Contact List 1.0.\nWritten by: Your Name”, “About”) ;

})

Type in this line of Code.

}

ox ‘l:o . HZ Causes g

i PoP up with ¢ message ((i

When You double—¢lick on the b . _ h the text vo . ’ . _

Pic{:wZBox, * ol oren s 0% will be '(:I{;lcd Abo,‘{:"' You Provide. The Onte you've {\I‘lcd .m £J:ic||g; .

tode up with a eursor blinking o{f tode, sav|c D‘E t‘:\?bav -

:\'?h‘?DhEn‘ e wz\dows “f; “sc‘;:ct:\cg “Save” o(:\rom the
e Pops wp as \/ou \/Pc,' . . _

it's trying to help you, but we File men. 6&“’:,\ {:hcla\rjb’l{: of

don't need that vight now. doing “Save All” vegularly!

there are no °
Dumb Questions

Q,: What's a method? Q: What does that \n thing do?

. Amethod is just a named block of code. . That's a line break. It tells C# to put
We'll talk a lot more about methods in Chapter 2. “Contact List 1.0.” on one line, and then start a
new line for “Written by:”.

you are here » 15

run the app (already!)

You can already run your application

Press the F5 key on your keyboard, or click the green
arrow button (|) on the toolbar to check out what you’ve
done so far. (This is called “debugging,” which just means
running your program using the IDE.) You can stop
debugging by selecting “Stop Debugging” from the Debug
menu or clicking this toolbar button: [.

o Forml = B =
| abcut ot]
Contact Lnt 1.0
Wiitten by: Your Mame

[ox]

Where are my files? C# Hurns your

program into a
file that Yyou tan
vrun, ¢alled an
executable. \ou'll
find it in heve, in

the debug folder.

This isn't a mistake; theve are two levels of folders. The innev
folder has the actual CH# code Liles.

When you run your program, Visual Studio copies
your files to My Documents\Visual Studio
2010\Projects\Contacts\Contacts\
bin\debug. You can even hop over to that
directory and run your program by double-clicking
on the .exe file the IDE creates.

Program.cs cH Form1. |c#] Contacts.csproj l
Designer.cs
Form1.cs Form1.resx Properties

16 Chapter 1

All theee of these
u‘l:‘l’:ons w‘”'k'—ahd ou

didn’t have 4, write any

«— Code {o make them work.

T

Clicking on the
OPC logo brings up
the About box you
\')us{: toded.

therejare no
Dumb Questions —

Q/: In my IDE, the green arrow is marked as
“Debug.” Is that a problem?

A- No. Debugging, at least for our purposes
right now, just means running your application
inside the IDE. We'll talk a lot more about
debugging later, but for now, you can simply think
about it as a way to run your program.

Q: | don’t see the Stop Debugging button
on my toolbar. What gives?

- The Stop Debugging button shows up in a
special toolbar that only shows up when your
program is running. Try starting the application
again, and see if it appears.

get productive with c#

Heres what weVve done so far

We’ve built a form and created a PictureBox object that pops up a
message box when it’s clicked on. Next, we need to add all the other
fields from the card, like the contact’s name and phone number.

Let’s store that information in a database. Visual Studio can connect
fields directly to that database for us, which means we don’t have to
mess with lots of database access code (which is good). But for that

to work, we need to create our database so that the controls on the
form can hook up to it. So we’re going to jump from the .NET Visual
Objects straight to the Data Storage section.

NET Visval
Objects

NET Data Storage Peployment
Patabase === Package
Objects

m Object

R

%Jects

o <
System -\N‘“d
data et

So we need to fotus

17 B This step is about on this step next:
§' (<‘>.°‘\D Connct'l:ing our ‘Eo\rm cha{'jmg ?w database,
Pictureed’. Tool©®?) the da-l:abasc, so and Yu{';{',mg .SOMC.
7 we'vre not ready for iial data into it

it yet, sinte we don't

Here's what we've but we stil need some have a database.
alrcady done... o tetks to \n{;cral';‘t L
b the data wel 7

in our database:
Visual Studio can generate code to connect your
form to a Jataloase, but you need to have the
database in place BEFORE generating that code.

”

you are here »

17

save it for later

We need a database to store our information

Before we add the rest of the fields to the form, we need
to create a database to hook the form up to. The IDE
can create lots of the code for connecting our form to
our data, but we need to define the database itself first.

0 Add a new SQL database to your project.
In the Solution Explorer, right-click the Contacts project,

Makc sure You've

select Add, and then choose New Item. Choose the SQL

Database icon, and name it ContactDB.sdf.

ped dcbug

e

mﬁ

e You tontinye.

This Lile is owr —m >

SQL
new database. Q

ContactDB.sdf

Ierinlied Y mpisten it | St
Choose Local :_|

Database

to create a
SQL Server
Compact]
Edition file, vl R
which will hold 1 om
your entire ~
database.
Name your file
ContactDB.sdf.

Tl P

Fewia

s it Caupmstea Fra

Q Click on the Add button in the Add New Item

window.

6 Cancel the Data Source Configuration Wizard.

For now, we want to skip configuring a-data source, so
click the Cancel button. We’ll come back to this once

we’ve set up our database structure.

G View your database in the Solution Explorer.

Go to the Solution Explorer, and you’ll see that

Tpmrs Womend O o

e sty ML Sarver ot Libas
ks o ki datn

A Lotal Database is
atkually a SQL- Sevver

Com att Edition
dz%;basc file, whith

ypically has the
cﬁ,c“s\on SDF. [t gves

an casy wa\[
ct:bcd 3 database into

\Iow' Y\’OSVa""

If you’re not using
the Express edition,
you’ll see “Server

Watch lt Explorer” instead of

“Database Explorer.”

The Visual Studio 2010 Professional
and Team Foundation editions don’t
have a Database Explorer window.
Instead, they have a Server Explorer

18

ContactDB has been added to the file list. Double-click
ContactDB.sdf in the Solution Explorer and look at the
left side of your screen. The Toolbox has changed to a
Database Explorer.

Chapter 1

window, which does everything the
Database Explorer does, but also lets
you explore data on your network.

The IDE created a database

When you told the IDE to add a new SQL database to
your project, the IDE created a new database for you. A
SQL database is a system that stores data for you in an
organized, interrelated way. The IDE gives you all the
tools you need to maintain your data and databases.

Data in a SQL database lives in tables. For now, you

can think of a table like a spreadsheet. It organizes your
information into columns and rows. The columns are the
data categories, like a contact’s name and phone number,
and each row is the data for one contact card.

NET Visval

Objects

get productive with c#

NET Vata Storage Deployment
Database . Package
Objecfs

A SQL database stoves Your
data, and has in‘corma'l:ion about
how it’s struetured and SQL
tode to help You access it.

Your data's stoved in 2

i d
le with tolumns an
tii: like in @ svvcadshcc‘c- Tables

/

SQl is its own language

Store
PrOCeduges

SQL stands for Structured Query Language. p\

It’s a programming language for accessing data in

databases. It’s got its own syntax, keywords, and

structure. SQL code takes the form of statements

and queries, which access and retrieve the data. SQL
A SQL database can hold stored procedures,
which are a bunch of SQL statements and queries
that are stored in the database and can be run at
any time. The IDE generates SQL statements and
stored procedures for you automatically to let your
program access the data in the database.

ContactDB.sdf

N=—— [note from marketing: Can we get a plug

Lor Head First SQL in here?]

The SQL database is in this Lile.
We've just about £o define tables
and data for it, and all of that
will be stored in here too.

you are here » 19

data storage made easy

Creating the table for the Contact List

We have a database, and now we need to store information
in it. But our information actually has to go into a table,
the data structure that databases use to hold individual bits
of data. For our application, let’s create a table called
“People” to store all the contact information:

o

Add a table to the ContactDB database.
Right-click on Tables in the Database Explorer, and select
Create Table. This will open up a window where you can
define the columns in the table you just created.

Diatabase Explorer * X

¢l <1 |
4 [d Data Connections
4 |l ContactDB.sdf
[Tahles
i R Create Table

MNew Query

&

=]

Refresh
ARlt+Enter

Properties

Now we need to add columns to our table. First, let’s add a
column called ContactID to our new People table, so that
each Contact record has its own unique ID.

2]

Add a ContactID column to the People table.
Type “ContactID” in the Column Name field, and
select Int from the Data Type drop-down box. Be sure
to select “No” for Allow Nulls.

Finally, let’s make this the primary key of our table.
Highlight the ContactID column you just created, and
click the Primary Key button. This tells the database
that each entry will have a unique primary key entry.

Colimn Name Data Type

—_—

Lengeh~ " Allew Mulls Unigue Primany Kfy

]

CrntartiD Yes Yes
e

“nt”. Make sure to
\\ch'l

AN
tolumn called “Cow{:&d*{:lD" with data {:\/yc
Ves, and Primary Key to

Add a new ¢
set “A“ow Nu“s” +o0 No, “l/(nit\uc to

20 Chapter 1

therejare no
Dumb Questions

Q: What'’s a column again?

A- A column is one field of a table. Soin a
People table, you might have a FirstName and
LastName column. It will always have a data
type, too, like String or Date or Bool.

Q: Why do we need this ContactID
column?

A: It helps to have a unique ID for each
record in most database tables. Since we're
storing contact information for individual
people, we decided to create a column for that,
and call it ContactID.

Q: What's that Int from Data Type mean?

A: The data type tells the database what
type of information to expect for a column.

Int stands for integer, which is just a whole

number. So the ContactlD column will have
whole numbers in it.

Qj This is a lot of stuff. Should | be
getting all of this?

- No, it's OK if you don’t understand
everything right now. Your goal right now
should be to start to get familiar with the basics
of using the Visual Studio IDE to lay out your
form and run your program. (If you're dying to
know more about databases, you can always
pick up Head First SQL.)

get productive with c#

.NET Visual .NET Data Storage Deployment
Objects Database= Package
Objects -

Tell the database to autogenerate IDs. y Q1
Since ContactID is a number for the database, and not m
our users, we can tell our database to handle creating and
assigning IDs for us automatically. That way, we don’t have
to worry about writing any code to do this.

In the properties below your table, set Identity to “True” to
make ContactID an identity column for your table.

And make sure you specify the table name “People” in the
Name box at the top of the window.

This window is what you use
bl;:ﬁinc your Lable and
the data it will store.

.

3 ot Tose - Fcple T
% Cepmebnl i u.w A Primary kC\/ hc‘Es
Hare Propie your database loo
Cohine Mot DetaType Lengh AllowNolly Uimgue Prmaey Key up vetords quickly.
[Comsem = ‘i N Ye Y Sinte the primary
key is the main way
Your program will
lotate vetords, it
always needs to
have a value.
Defwait Vb
- S
L sy :
Weerasedi TQR reay Compect = g e
This will make
it so that the
Contaet[D
£ ield updates
a .
You’" need to click on the vight column an "fnma‘bcally

select “True” From the drop—down next to
|dcw(:i{:\/ to dcsigna{:e Contact|D as Your

Whehcver a new
vecord is added.

+able’s vetord |dentifier.

you are here » 21

let’s table this discussion

The blanks on the contact card
are columns in our People table

Now that you've created a primary key for the table, you need
to define all of the fields you’re going to track in the database.
Each field on our written contact card should become a
column in the People table.

Name: Laverne Smith e

Company: XYZ \ndustries

Telephone: (313)ss5-8139
Email: La\/erne.gm‘\{h@xgzmdus{r‘\eg.com

Client: ves Last call: 0S/36/07

For cath person, we want to store data:

:;\; name, Co':nFany, Phone number, email
vess, it she’s an OPC tlient, and th

date of the last time she was talTed. ‘

@\?A\N

PQAQWEWR
What kinds of problems could result from having
multiple rows stored for the same person?

22 Chapter 1

mailto:Laverne.Smith@XyZindustries.com

get productive with c#

' S

+
WG DOAES WHAT™

Now that you’ve created a People table and a primary key column, you need to add columns for all of the data

fields. See 1f you can work out which data type goes with each of the columns in your table, and also match the
data type to the right description.

Column Name Data Type Description
Last Call This type stores a date
. and time
it
Name A Boolean true/false type

bt

ContactID A string of letters,
numbers, and other
nvarchar(100) characters with a
maximum length of 100
Client?
Jatetime A whole number

you are here » 23

it’s just my type

R *

4
'WHe DAES wHaT?

Now that you've created a People table and a primary key column, you need to add columns for all of the data
fields. See if you can work out which data type goes with each of the columns in your table, and also match the
data type to the right description.

Column Name Data Type Description

Last Call This type stores a date

and time

Name A Boolean true/false type

ContactID A string of letters,

numbers, and other

characters with a
maximum length of 100

Jatetime A whole number

24 Chapter 1

get productive with c#

Finish building the table L T

Go back to where you entered the ContactID column
and add the other five columns from the contact card.
Here’s what your database table should look like
when you’re done:

Objects

fou are Here

Name: Peaple
Column MName Data Type Length Allow Mulle Unigue Primary ey
Contactil} int 4 MNa Yes Yes
Mame mvarchar 100 es Mo Mo \‘(: you set N\ow
Company mvarchar 100 Yes Ne Ne N \ls +o N°l he
X X Telephone rivarchar 104 Vet o o Lo\v"‘" mus
Bit field: — Email h 0w ¥ have 3 value
mai rvarchar =] \J
hold True or 2
Chient bit 1 Yes
Falsc values
LastCall datetime Yes
and ¢tan b
n be Some Cavds "\iah{:
vepresented

as a theekbox.

Onte

Visual Studio adds 3
“‘c‘: People Lable o

4he database:

e You ehiek OKx —

have some missip

in orma{;ioh’ so we'll
let cevtain ¢olumns
be blank.

Click on the OK button to save your new table. This will add an empty table to your database.
(If you clicked OK earlier, you can open the Edit Table window again by right-clicking on the
table in the Database Explorer and choosing “Edit Table Schema” from the menu.)

T - -
e
Pe—— e T ————

you are here » 25

adding your data

Insert your card data into the database

Now you’re ready to start entering cards into the database.

Here are some of the boss’s contacts—we’ll use those to
set up the database with a few records. e T3 =L Your \')ob is 1o cn’ccv.
Al 4he data from all six
a - & ContectDB.sdl ‘H’\C PCOY‘C +’ch
4 [Tables
. .] Pecp'
@ Expand Tables and then right-click Ca Replicati Drap Table
on the People table in the Database Tahle Properties
Explorer (or Server Explorer) and Edit Table Scherma
select Show Table Data. M Quesy
_"i Show Table Data
Fr} Copy CtrlsC
[Z] Retresh
@ Once you see the Table grid in the i Fmpecies Rakote:
main window, go ahead and add all
of the data below. (You’ll see all null (RO
values at first—just type over them » . Liz Ne\son \ E)
when you add your first row. And croud O “False Name:
ignore the exclamation points that TyRe TY\\:U‘JC o™ Company- TP

appear next to the data.) You don’t ~ ,, {he C Yay\s\a\"cd

. . L\ of Joces Tele
need to fill in the ContactID column; T3 <L
that happens automatically. Yo the h ko Ema

no ast
ye client: 7> b

phone: (a10)555~35T®

. LizNe\son@ITPORY
g call; 03/04/09

Name: LUCINAa ericson Facer comaan,
Company: €ricson events

Telephone: (313)ss5-9542
Email: LUCB@E\"\C&O(\&\IQH{S.'\nQO

Name: L\Oﬂd\ Jones Face: comasny
Company: Back Box inC.

Telephone: (718)SS5-S638
Email: Loones@xblackboxine.com

Client: o Last call: 0s/17/10

Client: Yes Last call: 05/at/10 ,

26 Chapter 1

mailto:LizNelson@JTP.ORg
mailto:LizNelson@JTP.ORg
mailto:Lucy@EricsonEvents.info
mailto:LJones@Xblackboxinc.com

Name: Sarah Kalter
Company: Kalter, Riddle and. Sto$t

Name: Matt Franks

Pasas comaans
Company: x¥Z \ndustries

Telephone: (313)sss-g1as

Email: ma’c{.FranKs@xgzindus{r&es.com
Client: vyes

Last call: 0S/a6/10

Objectville Paper Company is in the
United States, so the CEO writes
da{:cs so ‘H’\a'{: 09/2-6/’0 means May
26, 20l0. |£ Your mathine is set to
a di‘F‘FC\rcn{: |oca+,ion, You may need to
enter dates dif«ccvenﬂ\/; You might
need to use 26/05/10 instead.

®

Client: vyes

Once you've entered all six records,
select Save All from the File menu
again. That should save the records
to the database.

Dum

Q: So what happened to the data after | entered it? Where
did it go?

A: The IDE automatically stored the data you entered into the
People table in your database. The table, its columns, the data
types, and all of the data inside it is all stored in the SQL Server
Compact database file, ContactDB.sdf. That file is stored as part
of your project, and the IDE updates it just like it updates your
code files when you change them.

Telephone: (;14)sS5-S641
Email: Sarah@K(ZS.org

Client: no

: Laverne Smith
Company: XYZ \ndustries

Telephone: (5)3)sss-8139
Email: La\/eme.Sm‘\{h@anZ‘mdus{ries.QOm

Last call: 04/1i/10

That's di , .
\')us{: saves the file you've working on.

therejare no
b Questions

get productive with c#

Fage: compan,

Last call: 13/10/08

“Gave All” 4ells the IDE to save
cvcv\/’chinE in Your application-

Levent from “Gave”, whith

Q: OK, I entered these six records. Will they be part of
my program forever?

A: Yes, they're as much a part of the program as the code
that you write and the form that you're building. The difference is
that instead of being compiled into an executable program, the

ContactDB.sdf file is copied and stored along with the executable.

When your application needs to access data, it reads and writes
to ContactDB.sdf, in the program’s output directory.

This file is actually s SQL. ——>
database, and Your program

Can use it with {he tode th
E genevated for You. ‘

SQL

ContactDB.sdf

you are here »

27

mailto:Sarah@KRS.org
mailto:Laverne.Smith@XyZindustries.com
mailto:Matt.Franks@XyZindustries.com
mailto:Matt.Franks@XyZindustries.com

the data’s all in there

Connect your form to your database
objects with a data source

We’re finally ready to build the .NET database objects that our
form will use to talk to your database. We need a data source,

which is really just a collection of SQL statements your program
will use to talk to the ContactDB database.

o

Go back to your application’s form.
Close out the People table and the ContactDB database

diagram. You should now have the Form1l.cs [Design] tab visible.

People: QuenylC:ALL. cts\ContactUB.sdt) ﬂ

| LontactlD Mame

1 Lloyd Jones

=
Liz Melson

Matt Franks
Sarah Kalter

- [=3] wr

b ILILL

2]

Lucinda Fricson

Laverne Smith

Lompany
Black Box Inc.
Fricsnn Fuents
Imp
X¥Z Industries
Kalter, Fiddie a...
KYZ Industries
NLULL

| elephone

(718)555 5638
(712)555-0573
(419)555-2578
(212)555-8125
614]535-5641
(212)555-8129
NULL

Add a new data source to your application.

Email

Ueones@ublack...
lury@enrsoney...
liznelson@JTP....
Matt.Franks@x...

sarah@krs.org
Laverne.Smilh...

NULL

This should be easy by now. Click the Data menu, and then
select Add New Data Source...from the drop-down.

Lhent

True
Falze
True
True
False
True

NULL

File Fdit View Project Debug Data Foemat Toals Window Help
Pl G i | & A 5D Show Dara Sourees
- = 3 Pueview Data...
J Add Mew Data Sowrce.

b o

A Database Explorer

F :JJ Ciala Connechions
4 [y ContactDB.sdf
a [Tables
1= People
i Hephcation

28 Chapter 1

A | AWk Sl

Shifts Akt D

-l

| * [ol i
Ll | el

-
-y

Onc‘,c
close

get back 4o your .

orm.

Iou)\rc done eh‘{:cring data,

LastLall
5/26/2010 12:00...
SA7/2010 12400
3/4/2009 12:00:...
5/26/2010 12:00...
1210/ 2008 1.2:0...
4/11/2010 12:00...
NULL

The data source ou've
f:rcaJcin will ham]ic all the
interae ions between Your

form and Yyour database.

he data entry window to

get productive with c#

NET Visval Data Storage Deploywment
Objects Package
‘ = | . . 2
— i -1
l \ I B I \/»i. “_4 o
9 Configure your new data source.
Now you need to set up your data source to use the ContactDB
database. Here’s what to do: fou are Here
* Step 1: Choose a Data Source Type. Select Database
and click the Next button.
* Step 2: Choose a Database Model. Select Dataset and
click the Next button.
* Step 3: Choose Your Data Connection. You should see
your Contact database in the drop-down. Click Next. <~ Th“; Sé:PS tonnect Your
new data sourte wi
* Step 4: Choose Your Database Objects. Click the the People table i:lg};,e
Tables checkbox. ’\ / ContactDB database.
* In the Dataset Name field, make sure it says n the non—Ex .
“ContactDBDataSet” and click Finish. asked o save ‘er:szo:\ijzh S You may be
tontig. Answer “Ves.” ‘on in the app
Now your Lorm tan use the data
@ Faem1 = @ = sourte to intevact with the
Vol ContactDB dt;{',abaSC- \
&
(bR 4| , =P ContactDBDataSet.xsd =9
Contact Lt 1.0.
Written by: Your hlame ContactDB.sdf
i oK ! L ‘3
_ Contac ataSet. This file is Your database.
T\) Designer.cs
Here's Your cxis-l:ins Lorm.

These files ave what's
5cncra’ccd by the data

sourte you \)Us‘{i set up-

you are here » 29

bind it all together

Add database-driven controls to your form

Now we can go back to our form and add some more controls. But these
aren’t just any controls—they are controls that are bound to our database
and the columns in the People table. That just means that a change to
the data in one of the controls on the form automatically changes the
data in the matching column in the database.

6\ It took a little work, but now we've
back to ereating form org:d:s that

interact with our data va
3& \

Here’s how to create several database-driven controls:

I‘(—‘ You don't see this tab,
select Show Data Sourees
o Select the data source you want to use.
i Lrom the Data menu.
Select Show Data Sources from the Data pull-down menu. This
will bring up the Data Sources window, showing the sources you
have set up for your application.
E Database Explorer ._]jj Diata Sources): You can also
-, look for, and
i click on, the
This window shows i Data Sources

You all your daty | tab along the
Y 90t one setup, but | bottom of your
ore for different i Database

sourtes. We've op|
yo" Could haVC m

bles or databases. i Explorer window.

€@ Select the People table.

Under the ContactDBDataSet, you should see the People table and all of the columns in it.
Click the “expand” icon next to the People table to expand it—you’ll see the columns that you
added to your table. When you click on the People table in the Data Sources window and drag
it onto your form, the IDE automatically adds data controls to your form that the user can use
to browse and enter data. By default it adds a DataGridView, which lets the user work with the
data using one big spreadsheet-like control. Click the arrow next to the People table and select
Details—that tells the IDE to add individual controls to your form for each column in the table.

and thoose Details to

Data Sources -4 X . . W
J Wiy i‘c‘\({kt::‘T];Evzo add individual tontrols

than one larae

4) ContactDEDatabetl 4o Your Form vather
+ R =D syrycadshccﬁo\ikc data tontrol:
bl LontactiD
é ahl Marme

sbl Lompany .)
A” O‘F 'H'\C CO'WM\S 'qril_ Telephone \{ou'“ OV\\Y see {‘,\'\'\S dVOY—dO‘NV\ “c \{:“‘C\:C
Yyou eveated should sl Ernail ot a Lorm designer window o\’c{;\ ,
show up heve. . - IDE. [t leks you deag data contre

T LastCall data sowrte and

diveekly out of your

30 Chapter1 onto Your rorm-

get productive with c#

{NET Data Storage Deploywment
Patabase™== ! Package
\ / ,,,,,,,,, . ‘
I._;l ,,,,,,,,, (g
= |
o g

Create controls that bind to the People table.

Drag and drop the People table onto your form in the form
designer window. You should see controls appear for each
column in your database. Don’t worry too much about how they
look right now; just make sure that they all appear on the form.

If you accidentally click out of the form you’re working on, you
can always get back to it by clicking the “Form1.cs [Design]’
tab, or opening Forml . cs from the Solution Explorer.

Forml.cs [Dessgn]”

=y
E o Farmi =3 Eon |
Irfaﬁ £ms_7. H a0 omirMieXH
{,OO“)&V‘ ‘(:or ':.:-‘}u.-_.-.
navigating - e o
Ehrough the When b
People table. iy < | dragae
Hare vk Peo\ﬂc {'AHC
Compry onto the form,
Teleghang a tonbrol was
Eral eveated for
Chart checkBax! eath column in B This adapter allows your
Laxi sl Thasdsy |, Decasber 24, 2005 (5= the table. tontrols to interact
with SQL tommands
These won't

show up on

d 27| contactDADutasarl

that the IDE and data

U pesplaBindingtourte

. sourte genevated for you
[} peopteTabhedidapter
your form, but T isbleadaptertbnanss 117 peapteBindingNavigatr \)
vepresent the l
tode that the - —
|D£E C;ftc.ih{” This O{‘?wl: tonnetts the
inteva Wi orm
the Peaple table pour Peole table. The bining
and Con{'.GC{ZDB cohhe‘:{:‘ '(:hc {‘Joolbalr
database. ‘3°h1’crols o your
e.

you are here » 31

make it preity

Good prograwms are intuitive to use

Name: Laverne Smith

Pt comgaay
Right now, the form works. But it doesn’t look that great. Your —> Company: XYZ \ndustries
application has to do more than be functional. It should be Our form would Telephone: (33)s55-8130
easy to use. With just a few simple steps, you can make the be move intuitive Email: Laverne Smith@xuzindustri
form look a lot more like the paper cards we were using at the £ it looked - e At <O
beginning of the chapter. 3 lot like the Client: ves Last call: 05/36/07
tontact cavd.
|
@ Line up your fields and labels.
Line up your fields and labels along the left edge of
the form. Your form will look like other applications,
and make your users feel more comfortable using it.
a2 Forml = |-
M 40 of (0} b M & K id
Contact ID: =
B‘\AC thS WI" show Name: [N
up on the form as e k
trols <
you drag tor) Telaphone:
avound. Theyve
lp Yyou Email:
{-jhcrc b(l\"‘elg Yo S e @y
line the Yields up: Clent: 11 checkBox! 0
o o o
Last Cal Thureday , Uscember 24, 208 [~

@ Change the Text Property on the Client checkbox.
When you first drag the fields onto the form, your Client
checkbox will have a label to the right that needs to be deleted.
Right below the Solution Explorer, you’ll see the Properties

window. Scroll down to the Text property and delete the
“checkbox1” label.

[*3x
clientCheckBox Syvtemn. Window. Formu.Check = DClC{C {‘“5 WOY'd -to makc
s i -
T3] -{;he labcl 30 awa\/~
TatiStop Trae -
Tag
R oot &
Tedfilgen Blcdellml o)
TedimageRelabon Overlay
Three3late False

WeCompatibleTexl Falie
WUseMnemanic Tiue
UeeVnualityleflackl True

Wse\WaitCursor Fale
Wirhle Tiue
Tewt

Thee besd assctrated with the contral,

32 Chapter 1

get productive with c#

.NET Visual NET Data Storage Deploywment
Objects Vatabase= Package
Objects =
You are Here —»Og .
=z O - \ 4 A\
c!» -T" ’
P ' :

Make the application look professional.

You can change the name of the form by clicking on any empty
space within the form, and finding the Text property in the
Properties window of your IDE. Change the name of the form
to Objectville Paper Company Contact List.

You can also turn off’ the Maximize and Minimize buttons
in this same window, by looking for the MaximizeBox and
MinimizeBox properties. Set these both to False.

/_§ Pregeries =
. Farml Syetem Windowd FarmiFaem =
The Properties indow i ul
‘\O\A\d bC V‘Sh‘t \)C\O‘N ShawinTaskiar True
s . E"* \orer, n Size £0R, 761
Solution s SizelingSiyk Bute
the \owevr \"\5\\{3 pane StartFeaition WindowsDefauklocaty
Tig
your IDE-
Tophion Faise
Trrugaenakey [
Llaw'N st Cureod Fabvm i
WindowState Hewnad
Text
The Rext imaccished with the contrel

The reason You wah{: '{‘.o {:u\rn
off the Ma\{(imizc button is
that maximizing Yyour form
won't thange the positions of
the eontrols, so itll look weird.

The Text Property
tontrols the hcadihg on
Your Lorm’s title bay.

If you don’t have a Properties window, you can turn
it on by selecting it from the View drop-down menu.

A good application not only works, but is easy
to use. [t's always a gooJ idea to make sure it

hehaves as a typical user would expect it to.

you are here » 33

ok, one last thing...

Test drive

OK, just one more thing to do... run your program and make sure Cliek the X box in the ¢

it works the way you think it should! Do it the same way you did p the Program sg ::ncv-
before—press the I'5 key on your keyboard, or click the green arrow €an move on 4o the nex fys "
button on the toolbar (or choose “Run” from the Debug menu). ep-

You can always run your programs at any time, even when they’re not
done—although if there’s an error in the code, the IDE will tell you
and stop you from executing it.

o) Objectville Paper Company Contact List ﬁ
1 of6 b # |
These tontrols _— S —
let you page ' £
B lJ Ehrough the ; Mame: Lioyd Jones | nju«mw«-q-.
< < flevent vecords Compary: Black Box Inc o
uilding your ¢ | i
g y in the database Telephone: (713)555-5638
Program Email: Lloneei@dblackbodne com
. Chent: J
overwrites e e e ———

the data in
your Jatalaase.

We'll spend move time Every time you

L build your
on }Es in the next program, the
¢hapter- . IDE puts a
1. fresh copy of
Wﬂtc}l it! the database
. . ' : in the bin
The IVE builds first, then runs . folder. This will overwrite
When you run your program in the IDE it actually does two things. First it any data you added when
builds your program, then it executes it. This involves a few distinct parts. you ran the program.
It compiles the code, or turns it into an executable file. Then it places the ' When you debug your program,
compiled code, along with any resources and other files, into a subdirectory : the IDE rebuilds it if the
underneath the bin folder. : code has changed—which
In this case, you'll find the executable and SQL database file in bin/ means that your database will

debug. Since it copies the database out each time, any changes you sometimes get overwritten

make will be lost the next time you run inside the IDE. But if you run the when you run your program in
executable from Windows, it'll save your data—until you build again, at : ”?e IDE. If you run .the program
which point the IDE will overwrite the SQL database with a new copy that directly from the bin/debug or

contains the data you set up from inside the Database Explorer. bin/r elease fo/dgr, or ifyou
use the installer to install it on

¢ your machine, then you won't
34 Chapter1 . see this problem.

How to turn YOUR application
into EVERYONE'S application

At this point, you’ve got a great program. But it only runs
on your machine. That means that nobody else can use the
app, pay you for it, see how great you are and hire you...
and your boss and customers can’t see the reports you’re
generating from the database.

C# makes it easy to take an application you've created, and
deploy it. Deployment is taking an application and installing
it onto other machines. And with the Visual C# IDE, you
can set up a deployment with just two steps.

L Contects - Micrasatt Visusl CF 2010 Expre:
File Edit View Propect | Debug Data
£l e L5 g 0] Add Windows Form,..
G0 | e & 3 A5 Add Class..,

|

Select Publish Contacts from
the Project menu.

Add MNew llem...
Add Existing lem._.,

Add Relerence..,

Add Sernce Eelerence.

Sel a5 HartUp Propect

Contacts Propertes_.
Publesh Contacts

NET Visval

Format Teols Window Help

get productive with c#

Data Storage Peployment

Package

T

Jou are Here

muilding the solution Jus‘f‘,

topies the files 4o Your
local machine. Publish
treates a Setup executable
and a COh£i5urafion file

so that any mathine ¢ould
install your Program.

Objects

ShifleAl=C | &t

-

Clri=5hilt=A
Shalt+ A= A

Puiblich Wizard

Just accept all of the defaults in
the Publish Wizard by clicking
Finish. You’ll see it package up
your application and then show
you a folder that has your Setup.
exe in it.

Tramphes:

Dk path: ehdwploymyapplication
£ YOu'!rc using Visual Studio P s i con
Ex?v-css, \/ou)” ‘Find “Publish”
in the ProJcC-{: meny, but in
other editions it may be in
the Build menu.

Wk aile:

Where do you want to publish the application?

Specdy b Incaben ko publin the spple stion:

You may publsh the applicabon to 3 web sae, FTP server, or filke path,

FIP server ftpe/iip.microsoft. commyapplication

el e i rersar s oen g gl stion

you are here » 35

share the love

Give your users the application

Once you've created a deployment, you’ll have a new folder
called publish/. That folder has several things in it, all
used for installation. The most important for your users is
setup, a program that will let them install your program on

their own computers.

Thi
supporting £
installer ave

Watch it!
: installer as

administrator.

If SQL Server
Compact isn’t already
installed on the
machine, the installer
will automatically
download and install
it. On some machines,
this won’t work unless
you run the setup

as administrator, so
right-click on “setup”
and choose “Run

as administrator” to
install it. If you don’t
have access to do
that, don’t worry! You
don’t need to in order
to move forward in the
book.

36 Chapter 1

< wheve all of the
s 1s whev! e (:ar the

s{',o‘rcd \| 75

jw| J = Contects » poblish » - |43

OrgemdNg Inchade in bsary = Lhare wilh = Bum ® B v

¢ Favesites
B Desktop
& Dewnloads
o Recerd Plages

a4 Lilraney
& Decumeras

5 flems

ThlS is hOW)’ouy-

- File tells the imstaller .
e (:{'\,\\r:n{:{';ak needs users will install
::;l intluded when the he Program on

talled: their omputers/

\’V OSV' am s n

My secretary just told me that you've
got the new contact database working
already. Pack your bags—we've got room on
the jet to Aspen for a go-getter like youl

i i d. Qood 'ob!
ds like the boss is please
%’\::c’ss ;)us{ one move thing 4o do \Jcﬁorc

you tan Jc{: off to the slopes, {',houg\'\...

get productive with c#

) NET Visual NET Data St Vepl t
VOU re NOT dOVle: ‘l'es‘l' Obiec’::ua Vatabase: B P:glgqmew

. [Objects = @
your installation | @ Y.
s < - ; »; X - | Ll)
Before you pop the cork on any champagne bottles, you need ‘ \ A=) { K/ T %
to test your deployment and installation. You wouldn’t give)
anyone your program without running it first, would you? 2 T
Close the Visual Studio IDE. Click the setup program,

and select a location on your own computer to install the Youl are Here
program. Now run it from there, and make sure it works like
you expect. You can add and change records, too, and they’ll
be saved to the database. N
{:oow You an make ¢hanaes
the dats, and they'7 .
aved o the databse O

J

ot Objectville Paper Company Contact List @
\/ou tan use the
arvows and the ! e o
text field to switeh Cortact 1D: et

between vee '
Oﬁf/r Name: Uoyd Jones f\ﬁlu Faper company

Company: Black Box Inc.
Telephone: (718)555-5638

Email: LJones@xblackboxing.com
60 ahcad...makc Client: [#]
some changcs
) Last Call: Wednesd M 26,2010 @~

'ou Ve dc‘zlo\/cd e gy, ay ;

i so ‘thls {"’\cl TT co""i&t‘f;s y°u
)“ S{ltk en chd are a”

{')\C\[theve. Thc\/'\rc Part

of the ContactDB.
sdf database file,
which gets installed
along with Your

TEST EVERYTHING!

Test your program, test

your Jeployment, test the
data in your application.

you are here » 37

super fast!

You've built a complete
data-driven application

The Visual Studio IDE made it pretty easy to create
a Windows application, create and design a database,

and hook the two together. You even were able to
build an installer with a few extra clicks.

From this

Name: L\Otjd Jones (it sty

Company: Back BOx inC.

Telephone: (718)555-S628
Email: Loones@xblackboxine.com

Last call: 05/36/01

Client: yes

to this

.NET Visval
Objects

NET
Database=z=—

Data Storage Peployment
Package

>4) Ao, B

0. 58
&0

ObJecfs =

ol Objectwlle Paper Company Contact List ﬁ
1 of 6 | b K | |
CotoctD: § -
Name: Uoyd Jones I %—wm
Company: Diack Dox b =
Telephone: (71015555610
Ermil: Liones@Ediackboxine com
Clert 7
Lot Call. wadneedsy, May 252000 [F=

in no time flat.

The power of Visual C# is that you can c[uickly
get up and running, and then focus on what
your program S supposeJ to do..not lots of

Wmc[ows, Luttons, anJ SQL access code.

38 Chapter 1

mailto:LJones@Xblackboxinc.com

get productive with c#

CSharpeross

Take some time to sit back and exercise your C# vocabulary with

this crossword; all of the solution words are from this chapter.

3
AEEEEEEN

Across

3. The explorer is where you edit the
contents of your SQL tables and bind them to
your program

5. An image, sound, icon, or file that's attached to
your project in a way that your code can access
easily

9. You build one of these so you can deploy your
program to another computer

12. What the "I" in IDE stands for

14. When you double-clicked on a control, the
IDE created this for you and you added code to it
15. Every row contains several of these, and all of
them can have different data types

16. The Explorer shows you all of the
files in your project

AEEEEEEE

Down

1. What's happening when code is turned into an

executable

2. What you change to alter the appearance or

behavior of controls on your form

3. What you're doing when you run your program

from inside the IDE

4. The "About" box in the Objectville Paper

Company Contact List program was one of these

6. You displayed the Objectville Paper Company

logo with one of these

7. Before you start building a program, you

should always think about users and their

g. A database can use many of these to store
ata

10. The data type in a SQL database that you use

to store true/false values

11. Before you can run your program, the IDE

does this to create the executable and move files

to the output directory

f13. You drag controls out of this and onto your
orm

you are here » 39

crossword solution

g
=
(Vo)
3
]
=
£
=
(&)

Chapter 1

40

2 it’s all just code

*
* Under the hood *

One of these days
T'll figure out what's
going on under there...

You’re a programmer, not just an IDE user.

You can get a lot of work done using the IDE. But there’s only so far it
can take you. Sure, there are a lot of repetitive tasks that you do when
you build an application. And the IDE is great at doing those things for
you. But working with the IDE is only the beginning. You can get your
programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

this is a new chapter

41

at your service

When youte doing this... Al of these fasks have 4o

i ’ it : do with standard actions
The IDE is a powerful tool—but that’s all it is, a foo/ for you to use. Every time and boilcvyla{c +ode. Those

you change your project or drag and drop something in the IDE, it creates code ave the thinas the [DE is
automatically. It’s really good at writing boilerplate code, or code that can be ¢)
reused easily without requiring much customization.

grca{: for helping with.

Let’s look at what the IDE does in typical application development, when you're...

Q Creating a Windows Forms Application project | s = =
There are several kinds of applications the IDE lets you T i " e
build, but we’ll be concentrating on Windows Forms R o =i
applications for now. Those are programs that have Sy
visual elements, like forms and buttons. T IHRey

Make sure you always treate a Windows Forms Applicati
project—that tells the [DE to eveate an cmy{:\/?zom s
and add it to your new project.

e Dragging a button out of the toolbox and i
onto your form, and then double-clicking it “E\Fﬂ"‘ﬂ/ /
Buttons are how you make things happen in your form. \'f { 0 1/
We’ll use a lot of buttons to explore various parts of the _ 3 buttenl p—
C# language. They’re also a part of almost every C# '—/ i \ <
application you’ll write. /
[I—— o
a1 Comiem Vmdes b o
e Setting a property on your form _SIET
The Properties window in the IDE is a really S
powerful tool that you can use to change attributes of e |
just about everything in your program: all visual and _
functional properties for the controls on your form, Tophlest ooty
attributes of your databases, and even options on your T L1 _
project itself. Wakwide' | I
Thc PV‘ i . . et
V‘ea“y c:':;rfl‘:; Z;hcd::é n 'H\CIDE ,Sa/ Ihlm:uﬂ.‘mﬂhlhfﬂdmd
a specifie thunk

tode in Forml.Des; i
IE would take 3 lot mgey 1 g g oceall.
and. Use the F4 shorteut 4, open 'g;xc

v ies wi o
42 Chapter 2 operties window i it’s elosed.

it’s all just code

..the IDE does this

Every time you make a change in the IDE, it makes a
change to the code, which means it changes the files that
contain that code. Sometimes it just modifies a few lines,
but other times it adds entire files to your project.

These files are ereated from
a predefined template that
eontains the basie tode 4o
treate and display a form.

Q ...the IDE creates the files and folders
for the project.

_>D

WindowsApplication1 Form1.cs Form1.Designer.cs
.CSproj

Program.cs Properties

9 ...the IDE adds code to the Forml.Designer.cs file that adds

the button to the form, and then adds code to the Forml.cs
file to handle the button click.

q private void buttonl Click(object sender, EventArgs e)
{

,K Form1.Designer.cs
}
The |DE knows how to add an empty me hod This ¢o d
4o handle a button elick. But it doesn t know gets addcd
what to put inside it—that's your \)Ob' F orm/.¢s, b
Form1.cs
e ...the IDE opens the Forml.Designer.cs file and

updates a line of code.

The IDE went into this file...

partial class Forml

{

’ . this.Text

“Objectville Paper Company Contact List”;

Form1.Designer.cs

.and u?da{:cd this line of tode.

you are here » 43

great, the “talk”

Where programs come from

A C# program may start out as statements in a bunch of
files, but it ends up as a program running in your computer.

Here’s how it gets there.

44

Every program starts out as source code files

You've already seen how to edit a program, and how the IDE saves your program
to files in a folder. Those files are your program—you can copy them to a new
folder and open them up, and everything will be there: forms, resources, code, and
anything else you added to your project.

You can think of the IDE as a kind of fancy file editor. It automatically does the
indenting for you, changes the colors of the keywords, matches up brackets for you,

and even suggests what words might come next. But in the end, all the IDE does is

edit the files that contain your program. :
Theve's no reason you

; ‘ ¢ouldn’t build Your
solution (. s1n) file and a folder that contains all of the other files for the program. programs in Notepad,

The solution file has a list of the project files (which end in . cspro3j) in the but it'd be a lot
solution, and the project files contain lists of all the other files associated with

The IDE bundles all of the files for your program into a solution by creating a

: St ‘ ' movre ‘f:imc—wnsuming.
the program. In this book, you’ll be building solutions that only have one project

in them, but you can easily add other projects to your solution using the IDE’s
Solution Explorer.

The .NET Framework gives you the right tools for the job

C# is just a language—Dby itself, it can’t actually do anything. And that’s where
the .NET Framework comes in. Remember that Maximize button you turned
off for the Contacts form? When you click the Maximize button on a window,
there’s code that tells the window how to maximize itself and take up the whole
screen. That code is part of the INET Framework. Buttons, checkboxes, lists...
those are all pieces of the .NET Framework. So are the internal bits that hooked
your form up to the database. It’s got tools to draw graphics, read and write files,
manage collections of things...all sorts of tools for a lot of jobs that programmers
have to do every day:.

The tools in the .NET Framework are divided up into namespaces. You've seen
these namespaces before, at the top of your code in the “using” lines. One namespace
is called System.Windows . Forms—it’s where your buttons, checkboxes, and
forms come from. Whenever you create a new Windows Forms Application project,
the IDE will add the necessary files so that your project contains a form, and those
files have the line “using System.Windows.Forms;” at the top.

Chapter 2

it’s all just code

Build the program to create an executable

When you select “Build Solution” from the Build menu, the IDE
compiles your program. It does this by running the compiler, which
1s a tool that reads your program’s source code and turns it into an
executable. The executable is a file on your disk that ends in . exe—
that’s what you double-click on to run your program. When you build
the program, it creates the executable inside the bin folder, which is
inside the project folder. When you publish your solution, it copies

the executable (and any other files necessary) into the folder you’re
publishing to.

When you select “Start Debugging” from the Debug menu, the IDE
compiles your program and runs the executable. It’s got some more
advanced tools for debugging your program, which just means running
it and being able to pause (or “break”) it so you can figure out what’s
going on.

Your program rums inside the CLR

When you double-click on the executable, Windows runs your program.
But there’s an extra “layer” between Windows and your program called
the Common Language Runtime, or CLR. Once upon a time, not
so long ago (but before C# was around), writing programs was harder,
because you had to deal with hardware and low-level machine stuff. You
never knew exactly how someone was going to configure his computer.
The CLR—often referred to as a virtual machine—takes care of all
that for you by doing a sort of “translation” between your program and

the computer running it. You don't veally have to worry
You’ll learn about all sorts of things the CLR does for you. For example, about the CLR much ngH:

it tightly manages your computer’s memory by figuring out when your now. [t's enough to know
program is finished with certain pieces of data and getting rid of them it's theve, and takes Ca\rc‘c
for you. That’s something programmers used to have to do themselves, of vunning your VV?Y?"‘ or
and it’s something that you don’t have to be bothered with. You won’t You automatically. You Il learn
know it at the time, but the CLR will make your job of learning C# a move about it as you 9o

whole lot easier.

you are here » 45

mother’s little helper

The IDE helps you code

You've already seen a few of the things that the IDE can do.
Let’s take a closer look at some of the tools it gives you.

0 The Solution Explorer shows you everything in your project
You’ll spend a lot of time going back and forth between classes, and the easiest
way to do that is to use the Solution Explorer. Here’s what the Solution Explorer
looks like after creating the Objectville Paper Company Contact List program:

Solution Explorer *0OXx
H5 £—
§). Folctire Cuuc b L pug The Solution
4 _-_Z*ﬂ Contacts _ Explorer shows
[=d| Properties ou how the
] References diffevent files
-'-?} app.config in the solution
| J ContactDB.sdf folder.
|55] ContactDBDataSetxsd
E] Forml.cs
#] Prograrn.cs

Heve's the form’s
0 Use the tabs to switch between open files vesourte file that

Since your program is split up into more than one file, you’ll usually have several \/‘L"_ addfd the
code files open at once. When you do, each one will be in its own tab in the code 0 JCC‘EVl“C Paper
editor. The IDE displays an asterisk (*) next to a filename if it hasn’t been saved yet. Com\?an\/ logo to.

Farml.cs [Design] Forml.cs > Bl M=

_/—\ P—
Lorm, \/ou’ll of£en have two tabs

When You've working on 3 .
for :\Jc\/a{: the same time—one for the form designer, and

one 4o view the form’s tode. Use control—tab to switth
bebween open windows quickly.

46 Chapter 2

it’s all just code

0 The IDE helps you write code

Did you notice little windows popping up as you typed code into the IDE? That’s

a feature called IntelliSense, and it’s really useful. One thing it does is show you
possible ways to complete your current line of code. If you type MessageBox and
then a period, it knows that there are three valid ways to complete that line:

The [DE knows that MessageBox has three
MessageBox. | - methods ealled Equals, Re«cerchcEquals, and Show.
‘@ Equals £ you type S, it seleets Show. T pe “(“ or space,
‘@ ReferenceEquals Tab, or Enter 4o tell the IDE to fill it in for you.

o EETR T i b el Gcsove f e g 3 ok

O‘c Y‘CQ”Y |0h5 "\C‘{Zhod names.
If you select Show and type (, the IDE’s IntelliSense will show you information
about how you can complete the line:

This means that there
ave 21 diffecent ways

MessageBox. Show(]

{')\a{: You tan call the & 3 of 21 ¥)System.Windows.Forms.DiologResult McssageBox.Show(string text, string coption)
Mcssacho%'S Show Displays a message box with specified text and caption.

method (like ways to text: The text to display in the message box

display different buttons

or itons)-

The IDE also has shortcuts called snippets that let you type an abbreviation to tell
it to fill in the rest of the code. Here’s a useful one: type mbox and press the Tab key
twice, and the IDE will fill in the MessageBox . Show method for you:

Start Debugging
MessageBox.Show([STESE") ; :I:::n\lo:u‘fc\w x:m imidgﬁ
the [DE, the Liest thing i
does is build your program- ;
i+ compiles, then your program
e F not, it won £ vun, and

0 The Error List helps you troubleshoot compiler errors

If you haven’t already discovered how easy it is to make typos in a CG# - the
program, you’ll find out very soon! Luckily, the IDE gives you a great tool for will show you errors n
troubleshooting them. When you build your solution, any problems that keep it Evvor List %

runs. I

from compiling will show up in the Error List window at the bottom of the IDE:

A P . Frraer List = X
missing semicolon
at the end of 3 @ 2trors |||) 0 Warmings | (i) 0 Messages
s‘(:a{cmcy\{; is one o‘('\ Deseriplion File Line Culwmn Project
{hc mos{; tommon “Gy=termn Windows.Forms. Messagelloy' Forml.cs Contrcks
evvrors '(')\af ke does not contain a definition for XYZ'
S

CF. Jvll CX: : expected Forml.cs 45 13 Contacts

program from bulldih&’ b

Double-click on an error, and the IDE will jump to the problem in the code:

private woid pictureBoxl Click{object sender, Eventhirgs e)

1
MessageBox.XYZ("hi") The [DE will show a ved

} y\/undcrscorc 4o show You

that there’s an error-.

you are here » 47

let’s dig in

When vou see a “Do this!”, pop open the IDE

When you change things in the IDE, 0 5 wel il you exactly vhat

+o do, and ?o'm{: out what to look for to 5:{:

The IDE is great at writing visual code for you. But don’t

you're also changing your code B e of he example we show ,/

take our word for it. Open up Visual Studio, create a new *

Windows Forms Application project, and see for yourself.

o

48

K—D@ this! *
Open up the designer code

Open the Forml.Designer. cs file in the IDE. But this time, instead of opening it in *
the Form Designer, open up its code by right-clicking on it in the Solution Explorer and
selecting “View Code.” Look for the Form1 class declaration:
No'l:iCC how it’s
a Parti 2 WL
partial class Forml < —~_/ Partial elass? we')) talk about that in 3 minute

Open up the Form designer and add a PictureBox to your form
Get used to working with more than one tab. Go to the Solution Explorer and open up the
Form designer by double-clicking on Forml . cs. Drag a new PictureBox onto a new form.

Find and expand the designer-generated code for the PictureBox control
Then go back to the Form1.Designer.cs tab in the IDE. Scroll down and look for this line in the code:

Click on the plus sign

Windows Form Designer generated code
Click on the + on the left-hand side of the line to expand the code. Scroll down and find these lines:

//
, .

// pictureBoxl Don't worry if the
/7 numbers in Your tode

for the Lotation and
this.pictureBoxl.Location = new System.Drawing.Point (276, 28); ¢, lines ave 3 little

: hese...

this.pictureBoxl.Name = “pictureBoxl”; / d.ﬁmn{: than t

this.pictureBoxl.Size = new System.Drawing.Size (100, 50);
this.pictureBoxl.TabIndex = 0;

this.pictureBoxl.TabStop = false;

Chapter 2

it’s all just code

Wait, wait! What did that say?

Scroll back up for a minute. There it is, at the top of the Windows

Form Designer—generated code section: [Most comments onl\/ dart
with two slashes (/7).

/// <summary> But the IDE sometimes

/// Required method for Designer support - do not modify adds these three—slash

/// the contents of this method with the code editor.

/)] </summary> tomments.
There’s nothing more attractive to a kid than a big sign that says, “Don’t These are XML comments,
touch this!” Come on, you know you’re tempted... let’s go modify the and You tan use them to
contents of that method with the code editor! Add a button to your dotument Your tode. Flip to
form, and then go ahead and do this: “Leftovers” section #l in the

Appendix of this book £o learn
movre abou‘{: ‘Ehc"\.

o Change the code that sets the buttonl.Text property. What
do you think it will do to the Properties window in the IDE?
Give it a shot—see what happens! Now go back to the form designer and
check the Text property. Did it change?

Q Stay in the designer, and use the Properties window to
change the Name property to something else.
See if you can find a way to get the IDE to change the Name property. It’s

in the Properties window at the very top, under “(Name)”. What happened You don't have ko save the
to the code? What about the comment in the code? Lorm or vun the program
1o see the changcs. Just s
e Change the code that sets the Location property to (0,0) and make the thange in the tode
the Size property to make the button really big. editor, and ’chcn“c\lék on
Did it work? the tab labeled Forml.ts

[Design]" 4o Klip over to the
Lorm dcsigncr—-{hc thanges

e 6o back to the designer, and change the button's BackColor hould show up immediately-

property to something else.
Look closely at the Forml . Designer.cs code. Were any lines added?

It's always easier to use the IDE to change your form’s
Designer—generateJ code. But when you Jo, any c]mange you
make in the IDE ends up as a change to your project’s code.

you are here » 49

your program makes a statement

Every time you make 3 new program, You

dc“:inc d names|
pace for it : ,
Anatomy of a program serarate from the NET Frpmmory, L0 &
sses.
Every C# program’s code is structured in exactly the
same way. All programs usc namespaces, classes,
and methods to make your code easier to manage.

[iece of your
A tlass tontains a yie ¥

program (although some very smsa)l.l

rams tan have ")us{: one tlas
" \/_% iR | Method 1

statement
statement

A ¢tlass has one o movre methods.
Your methods always have to
live inside a elass. And methods

Method 2
statement
are made wp of statements—like

o }] | statement
€ ones You've al\rcady seen.

Let’s take a closer look at your code

Open up the code from your Contacts project’s Forml.cs so
we can go through it piece by piece.

© The code file starts by using the .NET Framework tools
You’ll find a set of using lines at the top of every program file. They tell C# which parts of
the INET Framework to use. If you use other classes that are in other namespaces, then you’ll
add using lines for them, too. Since forms often use a lot of different tools from the .NET
Framework, the IDE automatically adds a bunch of using lines when it creates a form and
adds it to your project.

using System;

using System.Collections.Generic; Qxese using lines ave at the top
using System.ComponentModel ; every eode file. They tell

) g 5y P CH# 1o use all of those ?INET
using System.Data; Framework elasses. Each one 4ells
using System.Drawing; Yyour program that the tlasses in

this particular .¢s file will use all

of the classes in one specific .NET
using System.Text; Framework namespate.

using System.Ling;

using System.Windows.Forms;

One thing to keep in mind: you don’t actually /ave to use a using statement. You can always
use the fully qualified name. So if you leave out using System.Windows.Forms, you can
still show a message box by calling System.Windows.Forms.MessageBox.Show (),
and the compiler will know what namespace you’re talking about.

50 Chapter 2

it’s all just code

C# programs are organized into classes
Every C# program is organized into classes. A class can do anything, but most classes do one
specific thing. When you created the new program, the IDE added a class called Form1 that

displays a form. When you ¢alled your program Contacts, the [DE ¢veated a
K_\ namespace for it called Contacts b adding the namespace
namespace Contacts keyword at the top of your ¢ode gilc. Everything inside its

@ pair of curly brackets is part of the Contacts namespace.

(3]

Look for the
ma{:thing paivs
of brackets.
Every {is
eventually
paired up with
a } Some
pairs £an be
inside othevs.

o

This is a method called pi

public partial class Forml : Form
&This is 3 elass called Forml. [£ contains all of the code to draw the
¢ form and the Toolbox tontrols on it. The IDE eveated it when You
told it 1o ereate a new Windows Forms Application Yro‘)cc{.

Classes contain methods that perform actions

When a class needs to do something, it uses a method. A method takes an input, performs
some action, and sometimes produces an output. The way you pass input into a method is by
using parameters. Methods can behave differently depending on what input they’re given.
Some methods produce output. When they do, it’s called a return value. If you see the
keyword void in front of a method, that means it doesn’t return anything.

This line ealls a method named
lni'{:iahchomFoneh{:(), which the
IDE also eveated for You.

public Formil ()
{

InitializeComponent (

}

A statement performs one single action

When you added the MessageBox . Show () line to your program, you were adding a
statement. Every method is made up of statements. When your program calls a method, it
executes the first statement in the method, then the next, then the next, etc. When the method
runs out of statements or hits a return statement, it ends, and the program resumes after the
statement that originally called the method.

L{:choxl_Click() that This method has two parametevs called

sender and e.

i . box.
SCJc,s called when the user tlieks on the picture box 1/ v
private void pictureBoxl Click (object sender, EventArgs e)
{
MessageBox.Show (“Contact List 1.0”, “About”);
} Your statement called the Show() method,
This is a statement. You alveady which is part of the MessageBox class, which
@ } know what it does—it pops up a is inside the S\/s‘{:tm.Wmdows.Forms namespate.
} little message box window.

Your statement passed two parameters to the Show()

method. The first one was a string of text to display
in the message box, and the setond one was a string to
display in its title bar.

you are here » 51

a closer look

Every C# Program can only

ha i
Your program knows where to start o %) i oy
Tr;‘ {:l' s alwa\/s called Main0).
When you created the new Windows Application solution, one of the files the S{::r‘l:s hhow . khows' e v
IDE added was called Program.cs. Go to the Solution Explorer and double- e rn

click on it. It’s got a class called Program, and inside that class is a method called
Main (). That method is the entry point, which means that it’s the very first
thing that’s run in your program.

Here’s some tode the [DE built for you

automatically in the last ehapter. Youll
find it in ongram.(,s.

Jour Code Up Close

using System;

using System.Ling;

using System.Collections.Generic;
using System.Windows.Forms;

e Lo all this eode is
9 The namcsvaﬁf o .
namespace Contacts Contatts. We Il talk about namespaces
{ move in 3 few pages-
static class Program Lines that begin with two or more slashes are
{ tomments, which You ean add anywhere you want.

The slashes tell C# 4o ignore them.
/// <summary>

/// The main entry point for the application.
/// </summary> : .
very time

h You vrun Your Program,
[STAThread] /_\ it starts here, at the cn{:\rYSFoi:'l:.
static void Main()

{
Application.EnableVisualStyles() ;

eApplication .SetCompatibleTextRenderingDefault (false);

) . . F 1 ;<——_This statement eveates and
Application.Run(new Form 0) dis\?la\/s the Contaets form, and

} ends the program when the
form's elosed.

}
y | do detlave!

The fivst part of every ¢lass or
method is ¢alled 3 detlavation.

Remember, this is Jus{: a s{:a\r-{;ing point for You to
dig into the tode. But before You do, \/ou’” need to
know what \/ou)vc looking at.

52 Chapter 2

it’s all just code

C# and .NET have lots of built-in features. .

You’ll find lines like this at the top of almost every C# class ‘/ou\r programs wﬂl_usc move av\dl move
file. System.Windows.Forms is a namespace. The namespaces like this ?hc as Y°E .T:‘"f
using System.Windows.Forms line makes everything <—_ about C# and .NET’s other built—in

in that namespace available to your program. In this case, that features Jc\'\roughou{: the book.
namespace has lots of visual elements in it like buttons and .
forms. [£ you didn't svc(,i-@\/ the “us’mg line,
youd have to explieitly type out System.
Windows.Forms every time you use

The IDE chose a namespace for your code. anything in that namespace.

Here’s the namespace the IDE created for you—it chose
Contacts based on your project’s name. All of the code in

your program lives in this namespace. JQ/‘ Namei(raccs let You use the same name
in different programs, as |on5 as those

Programs aren't also in the same

. . d .
Your code is stored in a class. namespace
This particular class is called Program. The IDE created it

and added the code that starts the program and brings up the ou ¢an have multiple

Contacts form. tlasses in 3 single namesp

ate.

. have move
This code has one method, and it Technieally, 3."(’)"5”)3\:;" and you tan
contains several statements. than o /\Qa T s the enbey ot
A namespace has classes in it, and classes have methods. tell C#F v ‘f{_‘ eed 1o do that now-
Inside each method is a set of statements. In this but you wont

program, the statements handle starting up the Contacts

form. Methods are where the action happens—every Every C# Progt'am must

method does something.

have exactly one method

Each program has a special kind of caueJ Main‘ 'I_‘Fat metllo(l
method called the entry point.

Every C# program must have exactly one is tlle entry Point {or
method called Main. Even though your a—

program has a lot of methods, only one can be your coae.

the first one that gets executed, and that’s your
Main method. C# checks every class in your
code for a method that reads static void
Main (). Then, when the program is run, the

When you run your coJe,

first statement in this method gets executed, and tlle COJe mn y our Malﬂ()
everything else follows from that first statement. metlto J is execute C[FIRST.

you are here » 53

classy things

You can change your
program’s entfry point *

As long as your program has an entry point, it doesn’t
matter which class your entry point method is in, or

what that method does. Open up the program you

Do 1pis!
wrote in Chapter 1, remove the Main Tnethod in * Wuite down what hawcvncd
Program.cs, and create a new entry point.

54

e you thanged the

hod name and W\‘\I ou
o Go back to Program. cs and change the name of the Main method to z\:-,{:\ko{;ha{: h;l\?\?cmd.

NotMain. Now try to build and run the program. What happens?

Right—click on the

- - project in Properties
6 Now let’s create a new entry point. Add a new class called AnotherClass. and select “Add” and

cs. You add a class to your program by right-clicking on the project name “Class..”
in the Solution Explorer and selecting “Add>>Class...”. Name your class

file AnotherClass.cs. The IDE will add a class to your program called &j
AnotherClass. Here’s the file the IDE added:

using System; These four standard using
using System.Ling; lines weve added +o the file.
using System.Collections.Generic;

sing System.Text;
using oy X This elass is in the same Contatts namespacte

é\—/ that the IDE added when you Fiest eveated

the Windows Ay?lica{jon ?vojcc{:-

namespace Contacts
{
class AnotherClass

{
} The IDE au

{',Om 1
} tlass based a{:'ca”)' named the

on the ilename.

e Add a new using line to the top of the file: using System.Windows.Forms;
Don’t forget to end the line with a semicolon!

e Add this method to the AnotherClass class by typing it in between the curly brackets:

MessageBox is a tlass that lives class AnotherClass
in The S\/s{:cm.Windows.Forms {
namespace, which is why you had public static void Main()
Lo add the using line in step #3. (
S,_,-h“’o is a method that's part ‘M MessageBox.Show (“Pow!”) ;
Ehe MessageBox elass. }
}
Chapter 2

it’s all just code

" X
N@T)W run ﬁ' \ *
, i

So what happened?
X

Instead of popping up the Contacts application, your
program now shows this message box. When you made
the new Main () method, you gave your program a new
entry point. Now the first thing the program does is run

the statements in that method—which means running
that MessageBox . Show () statement. There’s nothing
else in that method, so once you click the OK button, the

program runs out of statements to execute and then it ends.

v

9 Figure out how to fix your program so it pops up Contacts again. Hink: Vou on\\[h.avc |
4o thange +wo lines in

fwo Files 4o do it

— agdharpen your penc
y Fill in the annotations so they describe the lines in this C# file

that they're pointing to. We've filled in the first one for you.

using System; CH ¢lasses have -
using System.Ling; lines o add methods Tvom

using System.Text; other namespates ...
using System.Windows.Forms:

{ E— s

class MyClass { e .

public static void DoSomething () { = .. .

MessageBox.Show (“This is a message”) ;

you are here » 55

get some answers

Q: What’s with all the curly brackets?

A: C# uses curly brackets (or “braces”) to
group statements together into blocks. Curly
brackets always come in pairs. You'll only
see a closing curly bracket after you see an
opening one. The IDE helps you match up
curly brackets—just click on one, and you'll
see it and its match get shaded darker.

Q: I don’t quite get what the entry
point is. Can you explain it one more
time?

therejare no
Dumb Questions

Q; How come | get errors in the
Error List window when [try to run my
program? | thought that only happened
when | did “Build Solution.”

A: Your program has a whole lot of
statements in it, but they’re not all run at
once. The program starts with the first
statement in the program, executes it, and
then goes on to the next one, and the next
one, etc. Those statements are usually
organized into a bunch of classes. So when
you run your program, how does it know
which statement to start with?

A: Because the first thing that happens
when you choose “Start Debugging” from
the menu or press the toolbar button to
start your program running is that it saves
all the files in your solution and then tries to
compile them. And when you compile your
code—whether it's when you run it, or when
you build the solution—if there are errors,

That's where the entry point comes in. The
compiler will not build your code unless there is
exactly one method called Main (), which

we call the entry point. The program starts the IDE will display them in the Error List
running with the first statementin Main (). instead of running your program.

A lot of the ervors that show up when You dom?ilc J
Your ¢ode also show up in the Evvor List window and
as ved squiggles under Your ¢ode.

r r pencil
.\Pﬁﬂ yw&lﬁion

using System;
using System.Ling;
using System.Text;

namespace SomeNamespace

class MyClass {

([‘ needs a ¢lass here.

MessageBox.Show (“This is a message”) ;

Fill in the annotations so they describe the lines in this C# file
that they're pointing to. We've filled in the first one for you.

C# classes have Lhese ‘using
lines to add mc{:\\ods ‘(:rom

other namespaces:

using System.Windows.Forms;

All of the eode lives in

tlasses, so the program This ¢lass has one method.

[£s name is “DoSomc{:hing,"
and when it’s ealled it pops

AK_/ wp a Mcssachoﬁ-

public static void DoSomething () ({

This is 3 skatement.
When it's exetuted,
it pops up 3 little
window with 3 e

mcssasc \hS\dC

56 Chapter 2

it’s all just code

.. . ‘*’ +

* WHAT'S MY v:nwvn:t'r

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

partial class Forml

{ Set properties for a label

this.BackColor = Color.DarkViolet;

Nothing—it’s a comment that the

| // This loop gets executed three times b programmer added to explain the code

to anyone who’s reading it

partial class Forml

{

private void InitializeComponent () I)Eabk:ﬂlernaxhrﬁzeicon(r?r)inthe

title bar of the Forml window

number of pit stopsLabel.Name

= “number of pit stopsLabel”;
number of pit stopsLabel.Size

= new System.Drawing.Size (135, 17);
number of pit stopsLabel.Text

= “Number of pit stops:”;

A special kind of comment that the IDE
uses to explain what an entire block of
code does

/// <summary>
/// Bring up the picture of Rover when
/// the button is clicked

Change the background color of the
Forml window

/// </summary>

partial class Forml
{ . A block of code that executes whenever
a program opens up a Forml window

this.MaximizeBox = false;

you are here » 57

exercise solution

., 5. */. P +

+ wHaT's MY ruwrvese?

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

partial class Forml

{ Set properties for a label

this.BackColor = Color.DarkViolet;

Nothing—it’s a comment that the

| // This loop gets executed three times ' programmer added to explain the code

to anyone who’s reading it

partial class Forml

{

private void InitializeComponent () Disable the maximize icon (F&1) in the
title bar of the Forml window

number of pit stopsLabel.Name
= “number of pit stopsLabel”;
number of pit stopsLabel.Size
= new System.Drawing.Size (135, 17);
number of pit stopsLabel.Text
= “Number of pit stops:”;

A special kind of comment that the IDE
uses to explain what an entire block of
code does

/// <summary>

/// Bring up the picture of Rover when
/// the button is clicked

/// </summary>

Change the background color of the
Forml window

partial class Forml
{ . A block of code that executes whenever
a program opens up a Forml window

this.MaximizeBox = false;

58 Chapter 2

it’s all just code

Two classes can be in the
same "amespace SomeClasses.cs

Take a look at these two class files from a
program called PetFiler2. They’ve got
three classes: a Dog class, a Cat class, and
a Fish class. Since they’re all in the same
PetFiler2 namespace, statements in the class Dog {
Dog.Bark () method can call Cat .Meow ()
and Fish.Swim (). It doesn’t matter how public void Bark() ({
the various namespaces and classes are divided

. statements go here
up between files. They still act the same when /1 g
they’re run.

namespace PetFiler2 ({

When a tlass is “\Jub\'\t

ik means every other }
tlass in the program £

secess iks methods: 1@ class Cat {

public void Meow () {
MoreClasses.cs // more statements

namespace PetFiler2 {

class Fish {

public void Swim() {
// statements

Sinte these tlasses are in the same namespace,
they ean all “see” eath other—even though
they've in diffevent files. A class ean span
multiple files too, but you need to use the
partial keyword when You detlave it.

f

You ¢an only split a elass up into diffevent
files if you use the partial keyword. You
F\robabl\/ won't do that in any of the code
You write in this book, but the |DE used it
to sFli‘[: our form up into two ‘(:ilcs, Forml.
¢s and orm,.Dcsigncr.cs‘

Partial) class Cat {

public void Purr() {
// statements

There’s more to namespaces and class declarations, but you
won’t need them for the work you’re doing right now. Flip to #2
in the “Leftovers” appendix to read more.

you are here » 59

your mileage may vary

Your programs use variables to work with data

When you get right down to it, every program is basically a data cruncher.
Sometimes the data is in the form of a document, or an image in a

video game, or an instant message. But it’s all just data. And that’s where
variables come in. A variable is what your program uses to store data.

Are you
already
familiar with

Watch lt’ another

language?

Peclare your variables

Whenever you declare a variable, you tell your program its type and its name.
Once C# knows your variable’s type, it’ll keep your program from compiling
if you make a mistake and try to do something that doesn’t make sense, like
subtract “Fido” from 48353.

If so, you might find a few
things in this chapter seem
really familiar. Still, it's worth
taking the time to run through
the exercises anyway,
because there may be a few
ways that C# is different from
what you’re used to.

These are the names

\able ypes:
T\\CSC are ‘k’,\\C vaY aole \' O‘F f ése vav.iab’cS.

h
Lint maxWeight;é;i>
string message;
bool boxChecked;

t These names are for YOU-
Like methods and tlasses, use
names that make scv\fc and

destvibe the vaviable's usage.

CH# uses the variable {

to de ine what data ¢
variables ¢3, hold.

YPe

hese

Variables vary

A variable is equal to different values at different times while your
program runs. In other words, a variable’s value varies. (Which is

why “variable” is such a good name.) This is really important, because
that idea is at the core of every program that you’ve written or will ever
write. So if your program sets the variable myHeight equal to 63:

int myHeight = 63;

any time myHeight appears in the code, C# will replace it with its
value, 63. Then, later on, if you change its value to 12:

myHeight = 12;

C# will replace myHeight with 12—but the variable 1s still called
myHeight.

60 Chapter 2

Whenever your
program needs to
work with numl)ers,
text, true/false
values, or any other
kind of data, you'll
use variables to lceep
track of them.

You have to assign values to variables
before you use them

Try putting these statements into a C# program:

int z;
MessageBox.Show (“The answer is ” + z);

Go ahead, give it a shot. You’ll get an error, and the IDE will
refuse to compile your code. That’s because the compiler
checks each variable to make sure that you’ve assigned it a
value before you use it. The easiest way to make sure you
don’t forget to assign your variables values is to combine

the statement that declares a variable with a statement that
assigns its value:

exactly like befove.

A few useful types

Every variable has a type that tells C# what kind of data it can
hold. We’ll go into a lot of detail about the many different types
in C# in Chapter 4. In the meantime, we’ll concentrate on the

Each detlaration has a type,

it’s all just code

I you write code
that uses a variable
that hasn't heen
Q‘:Sa‘s:‘;'::; & assignec[a value,
the variables: yoppe code won't
(:Ompile. It’s easy
to avoid that error
loy cmnbining your
variable declaration
and assignment into a

single statement.

|

Onte You've assigned a value
+o Your variable, that value

three most popular types. int holds integers (or whole numbers), €an change. So there’s no

string holds text, and bool holds Boolean true/false values.

var-i-a-ble, adjective.
able to be changed or adapted.
The dnll’s variable speed bit let
Bob change the drill speed Jfrom slow
to fast based on the job he had to do.

disadvan'[:agc) assignins a

variable an initial val
You de¢lave it. e vher

you are here » 61

operators are standing by

C# uses fawmiliar math symbols

Once you've got some data stored in a variable, what can you

do with it? Well, if it’s a number, you’ll probably want to add,
subtract, multiply, or divide it. And that’s where operators come
in. You already know the basic ones. Let’s talk about a few more.
Here’s a block of code that uses operators to do some simple math:

We declaved a new
int vaviable called
number and set it to
I5. Then we added 10

int number = 15;

number = number + 10;

to it Afker the second DUMber = 36 * 15;

fatinel " number =12 - (42 / 7);
number += 10; =

The %= operator ﬂnumber *= 3;

is simila\r ‘[‘p +.'_"’ ,l“,ﬂ]: - 71 .
extept it multiplies n e / 3

the turvent value of
number b\/ 3, so it

ends up set +o 4‘3 int count = 0 H

count ++;
This Mcssachox

will Pop up a3 box
that says “hello
a9ain hello”

count —--;

string result = “hello”;

To programmers, the
word “string” almost
always means a string of
text, and “int” is almost
always short for integer.

The third statement thanges the
value of number, setting it equal to
26 times |5, whith is 540. Then it
vesets it again, setting it equal to
12 = (42 / D), whieh is b.

This opevator is a little diffevent.
+= means take the value of number
and add 10 o it Sinte number is
Lu\rrcn‘u\/ cﬂ\ual to b, adding 10 to it
sets its value to 6.

NOV'ma“\/, 7, d|V|dCd b\, 3 is 2.3666666 Bu-t thh \/OU,V'C

dividing two ints, \/ou'll always get an int vesult, so 23.bbb...
gets truncated to 23.

You'll use int a lot for counting, and when you do, the ++
and —— operators tome in handy. 44 intrements tount

by adding one 4o the value, and —— detrements count by
subtracting one from it, so it ends up equal to zevo.

result += “ again " + result; £ When you use the + operator

The is an empty string,
[has no thavatters.

(H‘,’s kind O‘c like a zevo o
for adding s{:rings.) —>result = ;

A bool stores true
or false. The !
opevator means NOT.
I+ Fli‘?s true to
fLalse, and viee versa.

_JﬁyesNo = lanotherBool;

bool yesNo = false;

62 Chapter 2

MessageBox.Show (result) ;

bool anotherBool = true;

with a string, it just puts
two strings together. [+
automatically convert

result = “the value is: ” + count; numbers +o strings for you

Don’t worry about
memorizing these
operators now.

: You’ll get to know them
: because you’ll see ’em over and over again. :

Use the debugger to see your variables change

The debugger is a great tool for understanding how your programs K

work. You can use it to see the code on the previous page in action.

o Create a new Windows Forms Application project
Drag a button onto your form and double-click it. Enter all of the code on the previous
page. Then take a look at the comments in the screenshot below:

Fenml.gs ~Ox
4 hapter_?_Code Fomml -| g¥burionl_Chickjohject sender, Fventhrgs ¢) -
| “private vold buttanl Click{object sender, Furatirgs e} +

{

/ Here's a great way Lo use the IDE tv see how this code worksl

H

/f First, create a new project in the IDL add & button. Mext, double-click on the
£ button 2o Lhe IDE adds a bultonl Click eethod o your progras. Fill in that

! methad with all af the code, starting with "int aumber = 15;%.

i

£ Now put a breskpoldnl on the first Line by right-clicking oo it and choosing
“Breakpoint 33 Tnsert Breakpoint®™. The 1dne sheould turn red.

7
N

£ Next, start debugging your program. You®ll see it bresk on the line where you

{4 inserted the breakpoint. Your program's just poused! If weu click the Aun

{f toolbar button (or hit F4), it will continue. Right-click an “number™ and

i choose "Expression: 'number” »» Add Watch™ from the menu. The bobbom panel in

/¢ the IDE chould change to the Watches window, and there sheuld be a line in that
{ window for “mmher”. Step through the proagraa Iine by line using Step Over (F18).
/i You can see the value of the “number” wariasble change as you gol

i

{/f Da the sames far the count, result, yesha, and anathersiaal variahles.

@ int_number - 15;)

nusher = pusher - 1087

gty Whe .
number = 36 * 15%% n YOIA SC'(: a brcakPom-(: H
on a line
ber = 12 = (42 f 7); 1
5o - ofdf.odc, the line turns red and 3
number *= 5 re dof aPPC&Y‘S in thc makaih O‘F

mmber = 71 / 3; 'H\C COdC Cdi‘&k‘.

int count = @;

cunntst;
eount- -
Whe
string result = “hello”; h YOIA 4CI.,“5 YO(AV' Codc by
result 4= " again " # result; V'wmms "E inside ‘U\C IDE, as
Messagetion. Show(result); soon as .
resull = :}he valwe iz: ™ 4 count; brcakPOiZZ‘tt!;'voaram hl{ls a
result = *%; . 1 ! Pause and ,t'(‘, You
Inspect and Changc th
: e values
kool yesNo = false; a” 'H‘\C Va\riablc5. OF

ool anotherfiool = true;
yrsho = 'anotherBaal ;

I ENEE

e Insert a breakpoint on the first line of code

it’s all just code

X

Debug this!

*

Creating a new
Windows Forms
AP?lica‘l:ion ProJcC‘E
will tell the [DE o
ereate a new project
with a blank form
and an cn'l:r\/ Foin{:-
You might want to
name it somc{:hing like
“Chapter 2 program
’"——-\/ou'“ be building a
whole lot of programs
‘Ehroughoujc the book.

Comments (whith either
start with two or move
slashes or are survounded
by /% and */ marks)
show up in the [DE as
green text. You don't
have to worry about
what you type in between
those marks, because
commcn‘l:s are alwa\/s
ignored by the compiler.

Right-click on the first line of code (int number = 15;)and choose “Insert Breakpoint” from the
Breakpoint menu. (You can also click on it and choose Debug >> Toggle Breakpoint or press I'9.)

Flip the page and keep going!

you are here » 63

stop bugging me!
e Start debugging your program

Run your program in the debugger by clicking the Start Debugging button
(or by pressing I'5, or by choosing Debug >> Start Debugging from the
menu). Your program should start up as usual and pop up the form.

e Click on the button to trigger the breakpoint

As soon as your program gets to the line of code that has the breakpoint,
the IDE automatically brings up the code editor and highlights the current
line of code in yellow.

o int numbcr = 15;
number = number + 18;
number = 36 * 15;
number = 12 - (42 / 7)
number += 18;
number *— 3;
number- = 71/ 3;

Add a watch for the number variable

Right-click on the number variable (any occurrence of it will do!) and
choose Expression: ‘number’ >> Add Watch from the menu. The
Watch window should appear in the panel at the bottom of the IDE:

Watch
MName

rumber

Value

a

“ Frrar list B locaks -S:J Watch

Step through the code

Press F10 to step through the code. (You can also choose Debug >> Step Over
from the menu, or click the Step Over button in the Debug toolbar.) The current
line of code will be executed, setting the value of number to 15. The next line of
code will then be highlighted in yellow, and the Watch window will be updated:

Watch
MName

number

|1

“ Frrar list B locaks -S:J Watch

Value

| 15

As soon as the number
variable gets a new
value (15), its wateh is
updated.

)

Continue running the program
When you want to resume, just press I'5 (or Debug >> Continue), and the

program will resume running as usual.

64 Chapter 2

You tan also hover over

a vaviable while you've
debugging to see its value
displayed in a tooltip...and
You £an pin it soit says oFcn!

Ac[c[ing a watch
can help you
lceep track of
the values of
the variables in
your program.
This will really
come in lnanc[y
when your
programs get
more cmnplex.

Loops perform an action over and over

Here’s a peculiar thing about most large programs: they almost always
involve doing certain things over and over again. And that’s what
loops are for—they tell your program to keep executing a certain set

of statements as long as some condition is €rude (or falsel).

while (x > 5) That's a big part of why
booleans are so important- A
{ loop uses 3 Lest to (:igwc

X =x - 3; ouk if i should keep looping:

In a while looP, all of
the statements inside
the curly brackets get
exetuted as long as
the condition in the
paventheses is true.

/\/\/\
for (int i = 0;

{

it’s all just code

_ IDE Tip: Brackets

If your brackets (or braces—either name
will do) don’t match up, your program
won't build, which leads to frustrating
bugs. Luckily, the IDE can help with this!
Put your cursor on a bracket, and the
IDE highlights its match:

bool test;
while (test == true)
1

!/ Contents of the loop
¥

i< 8;

Every for loop has three statements. The fiest sets
up the loop. The statement will keep looping as long as
the second one is true. And the third statement gets
executed after eath time through the loop.
~IN —A N
i=1i4+ 2)

MessageBox.Show (“I’1l1l pop up 4 times”);

}

Use a code snippet to write simple for loops

You’ll be typing for loops in just a minute, and the IDE can help
speed up your coding a little. Type for followed by two tabs,
and the IDE will automatically insert code for you. If you type
a new variable, it’'ll automatically update the rest of the snippet.
Press tab again, and the cursor will jump to the length.

for (int @ =

£ you change the variable to 1
something else, the snippet

automatically ehanges the
other two otturrentes of it. }

Press tab +o get the cursor
'EoJumP to the length. The
number of fimes this loop vuns
is detevmined by whatever

you set length {o. You can

thange length 4o a number or a
variable.

8; i < length; i++)

you are here » 65

ready, set, code!

Time to start coding — Afew helplu] tips —

% Don't forget that all your statements need
The real work of any program is in its statements. But to end in a semicolon:

statements don’t exist in a vacuum. So let’s set the stage
for digging in and getting some code written. Create a
new Windows Forms Application project. ®* You can add comments to your code by
starting them with two slashes:

* * // this text is ignored

% Variables are declared with a name and a

Build this Form (55 vime to ap coing 1 b e type (there are plenty of types that you'l
__(_/_/_/ learn about in Chapter 4):
A AN N ine weignt,
— // weight is an integer
/
7) [\ pwwnz
% The code for a class or a method goes
between curly braces:

hattond | public void Go () {
// your code here

name = “Joe”;

}
% Most of the time, extra whitespace is fine:
int = 1234 ;
is the same as:

Add statements to show a message

Get started by double-clicking on the first button. Then add
these statements to the buttonl Click () method. Look
closely at the code and the output it produces.

int j = 1234;

Lisd va‘riab\c- The “i{.v‘\){'." private void buttonl Click(object sender, EventArgs e)
Lells C# that its { ’s a built-i
Yar.{:{;c ev, and the ves . ;{;’hc“ 0 bm',‘l:_m tlass talled
f:t T‘)\ Slc,altcmcn‘c sets // this is a comment ath, and it’ 9ot 3 member.
. \c . to % string name = “Quentin”; called P|. Math lives in the
its value _/ﬁ int @ = 3; SYSfcm hamespate, so the
* : w Fl,c this tode came ‘From
x =x * 17; needs to have a%-
double d = Math.PI / 2; line at the top. !

MessageBox.Show (“name is “ + name

name is Quentin “ R
%ix 51 Fonx ds ot ox

d is 1.5707903267349 + "™\nd is ™ + d);

The \n is an estape seauente

m to add a line break +o Fhe
message box.

66 Chapter 2

it’s all just code

if/else statements make decisions

Use if/ else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t)
true. A lot of if/else statements check if two things are equal.
That’s when you use the == operator. That’s different from the
single equals sign (=) operator, which you use to set a value.

EVCV‘[£ s{-,a{-,cmcﬂ:

stavrts with 3
if (someValue == 24) tonditional test

| The statement inside
Lhe eurly bratkets is
MessageBox.Show (“The value was 24."); %\ e el ooy e

{cs{ is true.
}

s ko theek i
lways use two equals signs
i‘,\:’o zc\n\ngs ave equal to €ath other.

if (someValue % 24)
if/else statements ave {

iahtforward.
\’ECJ’CC:Y Zﬁ:::%‘:;jrw i // You can have as many statements
Lgt'.cstm, the // as you want inside the brackets
\’L:E*a"‘ gc\,::t:,;thzhc MessageBox.Show (“'The value was 24.");
S emeén

fivst set of bratkets. } else {

Othevwise, it exetutes

fhe statements ch MessageBox.Show (“'The value wasn’'t 24.");
}

the second set.

Don’t confuse the two equals sign operators!

You use one equals sign (=) to set a variable’s value, but two equals

Wat'0h lff' signs (==) to compare two variables. You won’t believe how many bugs in

. * programs—even ones made by experienced programmers!—are caused
by using = instead of ==. If you see the IDE complain that you “cannot implicitly
convert type ‘int’ to ‘bool”, that's probably what happened.

you are here » 67

the things you can do

Set up conditions and see if theyte true

Use if/ else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t) true.

Use logical operators to check conditions

You've just looked at the == operator, which you use to test whether two
variables are equal. There are a few other operators, too. Don’t worry about
memorizing them right now—you’ll get to know them over the next few
chapters.

* The != operator works a lot like ==, except it’s true if the two things
you’re comparing are not equal.

* You can use > and < to compare numbers and see if one is bigger or
smaller than the other.

% The ==, !=, > and < operators are called conditional operators.

When you use them to test two variables or values, it’s called
performing a conditional test.

% You can combine individual conditional tests into one long test using

the && operator for AND and the | | operator for OR. So to check if

When you use
a conditional
o])erator to
compare two
numbers, it's

called a

conditional test.

iequals3orjislessthan5,do (1 == 3) || (j < 5).
Make sure you stop Your program before
You do this—the [DE won't let You edit
the ¢ode while the P\rogv-am)s running.
Set a variable and then check its value You ean stop it by elesing the vindow,
using the stop button on the toolbar, or
Here’s the code for the second button. It’s an if/else statement that selecting “Stop chu%'ma” £rom the
checks an integer variable called x to see if it’s equal to 10. DCb“S menu.

private void button2 Click(object sender, EventArgs e)

{

int x = 5;

FirS‘l: we set if (x ==10)
up a variable { “ ”
Ca“cd % and | MessageBox.Show (“x must be 10”7);
make i
b ; it equal else

- Then we {

. R

theek if it's MessageBox.Show (“x isn’t 107);
cqual t lo. }

xisn't 10

OK

68 Chapter 2

Here’s the output. See if you can tweak one line
of code and get it to say “x must be 10” instead.

it’s all just code

Add another conditional test

The third button makes this output. Now make a change to

This line thetks someValue to
two lines of code so that it pops up both message boxes.

see if it's equal to 3, and then
it ehecks to make sure name

is “\)oc"~
ﬂ private void button3 Click(object sender, EventArgs e)
{
int someValue = 4;
thes ine runs nn matter what .
string name = “Bobbo Jr.”;
if ((someValue == 3) && (name == “Joe”)) <
E OK ; {

MessageBox.Show (“x is 3 and the name is Joe”);

}

MessageBox.Show (“this line runs no matter what”);

Add loops to your program

Here’s the code for the last button. It’s got two loops. The first is a while loop,
which repeats the statements inside the brackets as long as the condition is true—do
something while this is true. The second one is a £or loop. Take a look and see how it

works.
private void button4 Click(object sender, EventArgs e)
{ .
This loop k int count = 0; The setond yar{: of the for s{:a{:crnc;\{ ns{:ha“
oo o .
ve ca'l:im\> ;:l? : ' the test. [t says for as long as 1 s TCCZ test
Jch‘: . ?l: ?hl?l aS/Whlle (count < 10) five the loop should keep on 30nY .h ‘o
‘ Ics:ma,ﬁg‘? ¢ { ot — count - 1 s vun before {:\r\c_ tode blot;t,.ava :c; e blo
} is exeeuted only if the test is '
This sets up the loop: for ' S This statement aets c%ccu{:.c d ot
[t ‘)us{', assigns 3 count = count - 1; the end of eath loop- |h. {:h‘s{';asc’
value to the integer } ' it adds one o i every time {::
{',\'\3{’.,“ be used in it. \oo? cxe(,u{c& _lj\»\is s callc: . a,t:l
MessageBox.Show (“The answer is ” + count); itevator, and it's vun 'mcl—h‘\/
) after all the statements in the
tode blotk.

Before you click on the button, read through the code and try to figure out what the
message box will show. Then click the button and see if you were right! * E.E

you are here » 69

over and over and over and...

Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

int result = 0; // this variable will hold the final result We filled in the

el it 4y b —— first one for You.

int x = 6; // declare a variable x and

while (x > 3) {

// execute these statements as long as

result = result + x; // add x

x =x - 1; // subtract

}

for (int z=1; z< 3; z=2z + 1) {
// start the 1oop bY |
// keep looping as 1ONg @S

result = result + z; // e
}
// The next statement will pop up a message box that says
DL oo

MessageBox.Show (“The result is ” + result);

Move about tonditional tests

You tan do simple conditional tests b\/ theeking the value of a variable
using a tomparison ofcra{',or. Heve's how You tompare two ints, % and y:
X < y (less than)

X > y (greater than)
x ==y (equals—and yes, with two equals signs)

These are the ones you'll use most often.

70 Chapter 2

it’s all just code

Wait up! There's a flaw in your
logic. What happens to my loop if T
write a conditional fest that never

becomes false?

Then your loop runs forever!

Every time your program runs a conditional test, the result
is either true or false. If it’s true, then your program
gocs through the loop one more time. Every loop should
have code that, if it’s run enough times, should cause

the conditional test to eventually return false. But if it
doesn’t, then the loop will keep running until you kill the
es talled an infinite \00;\7’
atkually times when you
¢ im your prodre™

program or turn the computer off! .
This s sometim

and Lheve ave
wan‘t {3° use on

r r pencil
RP“‘)’““ e

Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it's going to end, how many times will it loop?

Loop #1 Loop #3 Loop #5
int count = 5; int j = 2; int p = 2;
while (count > 0) { for (int 1 = 1; 1 < 100; for (int q = 2; g < 32;
count = count * 3; i=1*2) a=4q* 2)
count = count * -1; { . ' . {
} For Loop #3, how/_>‘j - while (p < q)
many Limes will this while (3 < 25) {
statement be exetuted? { . . b—p * 2;
Loop #2 } 1 =3+)
R } For Loop #5, how — 9P "X

int count = 2;

many Limes will this }

white (1 ==0) statement be exetuted? Hint: o starts
count = count * 3 Loop #4 2 Th':\k abou{°:t;ﬂﬁlcﬁ°
count = count * -1; while (true) { int i = 1;} itevator “‘1=‘1* 27 i

exetuted.

1

Remember, a for loop alwa\/s
vuns the tonditional test at the
bcgim\'mg o‘(: the block, and the

iterator at the end of the block.

_ @PA\N
‘P QWEWR
Can you think of a reason that you’d want to write a

loop that never stops running? (Hint: You'll use one
in Chapter 13....)

you are here »

7

if only, but only if

harpen Your percil
: —k. &Iutmn Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks

so that the comments correctly describe the code that’s being run.

int result = 0; // this variable will hold the final result

int x = 6; // declare a variable x and SC‘[Z i‘t ‘{ZO b

while > 3) {

result = result + x; // add x 40 the vesult vaviable

x =x - 1; // subtract | 1crom '(:hc value O‘C b3

} This loop vuns twice—Fivst with z set 4o | , and
_ b then a setond time with z set 4o 2. Once it hits
for (int z = 1; @ z=2z+1) { 3 itsn longer less than 3, so the loop stops.
// start the loop by dcclarins a variable z and scH:ina it to |

// keep looping as long as 2 S less than 3

// after each loop, add | to =

result = result + z; // add 'Ehc value 0‘(: z ‘bo \rCSuH’.

}

harpen your pec
x sallltl n Here are a few loops. Write down if each loop will repeat forever or
" 0 eventually end. If it's going to end, how many times will it loop?

Loop #1 Loop #3 Loop #5

This loop executes once This loop executes 7 times This loop
executes 8 times

Loop #2 Loop #4

This loop runs forever Another infinite loop

Take the time to really (:igwc this one out. Here's a Pcr‘(:cd{: oﬂ?o\r‘(‘,uhi‘{:\/ to '{'x\/ out the dcbu%cr on Your own! Set a
breakpoint on the statement q = p — 9. Add watthes for the variables p and q and step through the loop.

72 Chapter 2

therejare no
b Questions

Dum

Q- Is every statement always in a class?

A: Yes. Any time a C# program does something, it's because
statements were executed. Those statements are a part of classes,
and those classes are a part of namespaces. Even when it looks
like something is not a statement in a class—like when you use
the designer to set a property on an object on your form—if you
search through your code you'll find that the IDE added or changed
statements inside a class somewhere.

Q: Are there any namespaces I'm not allowed to use? Are
there any | have to use?

A: Yes, there are a few namespaces that are not recommended to
use. Notice how all of the using lines at the top of your C# class
files always said Sy stem? That's because there’'s a System
namespace that's used by the .NET Framework. It's where you

find all of your important tools to add power to your programs, like
System. Data, which lets you work with tables and databases,
and System. IO, which lets you work with files and data streams.
But for the most part, you can choose any name you want for a
namespace (as long as it only has letters, numbers, and underscores).
When you create a new program, the IDE will automatically choose a
namespace for you based on the program’s name.

Q: I still don’t get why I need this partial class stuff.

A: Partial classes are how you can spread the code for one

class between more than one file. The IDE does that when it

creates a form—it keeps the code you edit in one file (like Form1 .
cs), and the code it modifies automatically for you in another file
(Forml .Designer.cs). Youdon't need to do that with a
namespace, though. One namespace can span two, three, or a
dozen or more files. Just put the namespace declaration at the top of
the file, and everything within the curly brackets after the declaration
is inside the same namespace. One more thing: you can have more
than one class in a file. And you can have more than one namespace

in a file. You'll learn a lot more about classes in the next few chapters.

Q: Let’s say | drag something onto my form, so the IDE
generates a bunch of code automatically. What happens to that
code if | click “Undo”?

A: The best way to answer this question is to try it! Give it a shot—
do something where the IDE generates some code for you.

QBUI.I.ET POINTS

it’s all just code

Drag a button on a form, change properties. Then try to undo it. What
happens? Well, for simple things you'll see that the IDE is smart
enough to undo it itself. But for more complex things, like adding

a new SQL database to your project, you'll be given a warning
message. It still knows how to undo the action, but it may not be able
to redo it.

Q,: So exactly how careful do | have to be with the code that’s
automatically generated by the IDE?

A: You should generally be pretty careful. It's really useful to
know what the IDE is doing to your code, and once in a while you'll
need to know what's in there in order to solve a serious problem. But
in almost all cases, you'll be able to do everything you need to do
through the IDE.

= You tell your program to perform actions using
statements. Statements are always part of classes, and
every class is in a namespace.

m Every statement ends with a semicolon (;).

m When you use the visual tools in the Visual Studio IDE,
it automatically adds or changes code in your program.

m Code blocks are surrounded by curly braces { }.
Classes, while loops, iffelse statements, and lots of
other kinds of statements use those blocks.

m Aconditional test is either true or false. You use
conditional tests to determine when a loop ends, and
which block of code to execute in an if/else statement.

= Any time your program needs to store some data, you
use a variable. Use = to assign a variable, and == to
test if two variables are equal.

m Awhile loop runs everything within its block (defined
by curly braces) as long as the conditional test is
true.

m Ifthe conditional testis false, the while loop code
block won't run, and execution will move down to the
code immediately after the loop block.

you are here » 73

your code... now in magnet form

Code Magnets

Part of a C# program is all scrambled up on the fridge. Can you rearrange
the code snippets to make a working C# program that produces the
message box? Some of the curly braces fell on the floor and they were
too small to pick up, so feel free to add as many of those as you need!
(Hint: you'll definitely need to add a couple. Just write them in!)

The “ is an empty string—it means Result

has no ¢thavacters in it yet. /

w This magnet didn't £3)]

\ string Result = "7; ' off the ‘:\ridgc...

if (x == 2) {
Result = Result + “b c¢”;

}

if (x> 2) |

Result = Result + “a”;

int x = 3;

’

Output:

I MessageBox . Show (Result) ; .

74 Chapter 2

—> Answers on page 82.

it’s all just code

e You)“ be Crca‘f:ing a lot of aw'ida{:ions

wc’llll give you a lot of exertises like this throughout the book. throughout this book, and you'll need to give
d‘ , SL"C ‘/E'* .JChC answer in 3 touple of pages. [F you get stuck, eath one a different name. We vecommend
ont be atraid to peck at the answer—it's not theating/ naming this one “Z Fun with if—else

statements” based on the chapter number
and the text in the title bar of the form.

Time to get some practice using if/else statements. Can you build this program?

AN

Exercise

Here’s the form.

Add this checkbox.

Drag it out of the toolbox and onto your
form. Use the Text property to change the
text that’s next to it. (You also use the Text
property to change the button and label text.)

F-

gl Fun with iffelse statements!

Change the color f the
box is checked

Enable color changing

This is a label.

You can use the properties to change the
font size and make it boldface. Use the
BackColor property to set to red—choose
“Red” from the selection of web colors.

Pop up this message if the user clicks the button but the

box IS NOT checked.
If your checkbox is named checkBox1 (you can change the Name property
if you want), then here’s the conditional test to see if it’s checked: i

checkBoxl.Checked == true The bes it ot ehicked

If the user clicks the button and the box IS checked, change the

background color of the label.
If the label background color is red, change it to blue when the button 1s clicked. If it’s blue,
change 1t back to red. Here’s a statement that sets the background color of a label called 1abell:

labell .BackColor = Color.Red;

(Hint: The conditional test to check whether a label’s background color is red looks a lot like that
statement—>but with one important difference!)

you are here » 75

ooh, pretty!

Let’s build something flashy! Start by creating a new Windows Forms Application in the IDE.
Exercise

o Here's the form to build o

&0 FlashyThing! el B0 [t

i insi for |oo\>—-d(:or (nt e =0 .)—then
ks 1€ detlare a variable inside 3 ; : h
2:\3&: \llav:l:glc'sc only valid inside the ‘00\‘:|s Lwl:{‘bv.iil::ﬁ: \r‘f lo::\ ;w;eh
hat both use the variavle, Yyou eith : :
e i‘:‘rh‘:\‘/’f Sov\c adctl:va{:ion outside the loop- And if the vaviable ¢ is

o d outside of the loops, Yyou can't use it in either one.

alveady declave

e Make the form background go all psychedelic!
When the button’s clicked, make the form’s background
color cycle through a whole lot of colors! Create a loop that
has a variable ¢ go from 0 to 253. Here’s the block of code
that goes inside the curly brackets:

this.BackColor = Color.FromArgb(c, 255 - ¢, c);

Application.DoEvents () ; <—>
This line +ells

the program 4o . - oyesset
he other things i eeds b ﬁi?ﬁfpﬂ“ﬁ o iy and do Color me L S a
mouse elicks, efe. Try taking out. Lhis e o ceon . MK For bunth of predekine e
The form doesn't vedray | il betes Cl{?h S.C‘Elha what happens. NET has 3 o and Reds but W als
; ! S waiti i . . -
done before it deals with those events, 1 0 "0 T loop s ylors ke E\::e‘low own °°};.st"s\:>"‘\l‘5
ow ™ ol
For now, you'll use Application. DoEvents() to make sure \c\"\'\ﬁ \(': oocFrom 5\)0 "‘C' 5 ved valve
Your form stays vesponsive while it's in a loop, but it's the Luiny e W evs: ue.
kind of a hack. You shouldn't use this tode outside of a sget! 1 \ da blue Vv

ﬁo\/ program like this. Later on in the book, \/ou,” learn 3 ‘5"“‘“ CERS

abou‘t a muth be'l:‘l:cr wa\/ {:o |c£ \/ow ?rog\'ams do move
than one ‘U\ing at a {;'m\c,’

e Make it slower

Slow down the flashing by adding this line after the
Application.DoEvents () line:
. 2, illisecond
System.Threading.Thread.Sleep (3); This 5{33{;:"\‘{: mTEtS:\’av'{"" of
delay in the loof: N
ne NET ibrary, and i€ in the
system.Threading namespate:

76 Chapter 2

it’s all just code

e Make it smoother

Let’s make the colors cycle back to where they started. Add another loop that has
c go from 254 down to 0. Use the same block of code inside the curly brackets.

e Keep it going

Surround your two loops with another loop that continuously executes and doesn’t inside anothey

stop, so that when the button is pressed, the background starts changing colors and ©one, we ¢all it 3
. «

then keeps doing it. (Hint: The while (true) loop will run forever!) N_/ nested” looP.

When one looF is

Uh-oh! The program doesn’t stop!

Run your program in the IDE. Start it looping. Now close the window. Wait a
minute—the IDE didn’t go back into edit mode! It’s acting like the program
1s still running. You need to actually stop the program using the square stop
button in the IDE (or select “Stop Debugging” from the Debug menu).

e Make it stop
Make the loop you added in step #5 stop when the program is

closed. Change your outer loop to this:
while (Visible)

Now run the program and click the X box in the corner. The
window closes, and then the program stops! Except...there’s a
delay of a few seconds before the IDE goes back to edit mode.

When zcou'rc theeking a Boolean value like Visible

in an it statement or a |oo?, sometimes it's

ftm?fih% to test for (Visible == true). You ¢an

leave off the “== frue’—it's enough to intlude

the Boolean. FV'OHCM.
When you've working with a
form or tontrol, Visible is Can you figure out what’s causing that
f”‘fc as' !°"e as “‘F form o delay? Can you fix it so the program ends
ontrol 1s ber d'sPIaYCd' A immediately when you close the window?

You set it to false, it makes
the form or ontrol disappear.

Hint: The ¢ operator means
‘f(:ND . H:s how You s‘(:v-ing a bunth
CO.ndiJclonal tests fogc{:hcr into
one big test that's true only if the
: irst Lest is frue AND the second
hns)'bruc AND the third, ete. And
it'll come in handy {0 solve Lhis

you are here » 77

exercise solution

Time to get some practice using if/else statements. Can you build this program?

Exercie

SoLution

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling; Here's the tode for the form. We named our solution

using System.Text; “Fun with [£ Else”, so the [DE made the namespate
using System.Windows.Forms; Fun_wi'{:h_w_Elsc. w You gave Your solution a

diffevent name, it'll have a diffevent namespace.

namespace Fun with If Else

{

public partial class Forml : Form
(The IDE added the method called
public Forml () but‘ton’_CliCkO to Your form
(when you double—clicked on the
InitializeComponent () ; button. The method sc{:s Yun
} every time the button’s ¢licked.
private void buttonl Click(object sender, EventArgs e)
(The inner if statement
if (checkBoxl.Checked == true) thecks the label’s
: color. [£ the label
The outer i(,‘ if (labell.BackColor == Color.Red) is Lwrcw{:l\/ ved, it
statement ¢thecks { exetutes 3 statement
the eheekbox +o labell.BackColor = Color.Blue; to turn it blue.
see if it's been }
thecked. Cheek! else
{
labell.BackColor = Color.Red; .THssbﬂxm6h€S
b vun if the label’s
} ‘§;;_-—_—_——”’/,,~’/ backaround tolor is
else not ved to make it
¢ set back to ved.

MessageBox.Show (“"The box is not checked”);

) This MessageBox pops up if
the theckbox isn't ehetked.

You can download the code for all of the exercise solutions

in this book from www.headfirstlabs.com/books/hfcsharp/

78 Chapter 2

http://www.headfirstlabs.com/books/hfcsharp/

it’s all just code

XeRciSe
SoLution

of the logie. in

The outer loop
keeps vunning as for
long as the 2own
is visible. As soon
as it’s tlosed,
Visible is ‘pa|sc,
and the while
will stop looping.
We used £¢)
Visible instead— ¢,
of £¢ Visible
== true. [ts
just like saying
if its visible”
instead of “if
it's true that
it's visible”—they
mean the same

ﬂ\ing. }

Sometimes we won't show You the entive code

in the solution, ﬁuS{: the bits that changcd. All

he FlashyThing project is in thi . ' £ully showi
button]_Cliek() method Zlcha’c ?ch‘: IDE sdded when for people to vead code. But we've purposerully showing you

You double—ctlicked the button in the form designer- tode from diffevent people using diffevent styles.
private void buttonl Click(object sender, EventArgs e)

, 7while (Visible) {

Was your code a little different than ours? There's more than one way
to solve any Programming prololem—like you could have used while loops
instead of for loops. I your program worlcs, then you got the exercise right!

When the [DE added this method, it added an extra

veturn before the eurly bratket. Sometimes we'll put the
bracket on the same line like this to save space—but C#
doesn't care about extra spate, so this is perfectly valid.

Let’s build something flashy!

Consistency is generally veally important to make it easy

diffevent ways, because you'll need to get used to veading

(int ¢ = 0; ¢ < 254 && Visible; c++)
this.BackColor = Color.FromArgb(c, 255 - ¢, c);
Application.DoEvents () ; '\ The fiest for loop makes the

Colors eyele one wa
System.Threading.Thread.Sleep (3); setond for loop r‘:vz‘rrir;dt;l.::e
m

M so 'l:hcy look smooth.

(int ¢ = 254; ¢ >= 0 && Visible; c—--) {

this.BackColor = Color.FromArgb(c, 255 - ¢, c);

Fopestion Bosvente 07 We fixed the extra delay by
using the ¢¢ opevator 4o make
eath of the for loops also theck
Visible. That way the loop ends

as soon as Visible Lurns false.

System.Threading.Thread.Sleep(3);

Can you figure out what’s causing that
delay? Can you fix it so the program ends
immediately when you close the window?

The delay happens because the for loops need to finish before the
while loop can check if Visible is still true. You can fix it by adding
&& Visible to the conditional test in each for loop.

you are here » 79

this puzzle’s tougher than it looks

Poo] Puzzle

Your job is to take code snippets from

the pool and place them into
the blank lines in the code. You
may not use the same snippet

int x = 0;
String Poem = “;

more than once, and you won't while (=)
7\ need to use all the snippets.
Your goal is to make a class
that will compile and run. Don't if (x<1) |
be fooled—this one’s harder than it
looks. }

Output

- if) |

a noise annoys an oyster

}

if (x=1) {

}

if |) |

We included these “Pool Puzzle” exertises throughout the book
+o give Yyour brain an c%‘{:\ra-—‘[:ough workout. H: \/ou'rc the kind

of person who loves twisty little logic puzzles, then you'll love }
+his one. I-F \/ou’v'c not, give it a shot ah\/wa\/—bu{: don't be
afeaid o look at the answer to figure out what's going on.
And if you've stumped by a pool puzzle, definitely move on. }

Note: each snippet
from the pool can only
be used once!

x>0
x<1 X=x+1;
x> 1 X=X+2;
x>3 X=X -2;

Poem = Poem +“noys *;
Poem=Poem+"“ ", x<4 X=x-1; Poem = Poem + “oise “;
Poem = Poem +“a”; Poem = Poem +*“ oyster”;

— "o, _ " ",
Poem = Poem +“n”; MessageBox.Show(Poem); Poem = Poem +“annoys”;
Poem = Poem +“an”; Poem = Poem + “noise”;

—> Answers on page 83.

80 Chapter 2

Csharpeross

it’s all just code

How does a crossword help you learn C#%? Well, all the words are C#-

related and from this chapter. The clues also provide mental twists and
turns that will help you burn alternative routes to C# right into your brain.

H IEEEREEN

Across
3. You give information to a method using these

4. buttonl.Text and checkBox3.Name are examples of
8. Every statement ends with one of these

10. The name of every C# program’s entry point

11. Contains methods

12. Your code statements live in one of these

14. Akind of variable that's either true or false

15. A special method that tells your program where to start
16. This kind of class spans multiple files

Down

1. The output of a method is its value

2. system.Windows.Forms i$ an example of one of

these

5. Atiny piece of a program that does something

6. A block of code is surrounded by

7. The kind of test that tells a loop when to end

9. You can call .Show () to pop up a simple
Windows dialog box

13. The kind of variable that contains a whole number

you are here » 81

exercise solutions

Code Magnets Solution

Part of a C# program is all scrambled up on the fridge. Can you
rearrange the code snippets to make a working C# program that
produces the message box? Some of the curly braces fell on the
floor and they were too small to pick up, so feel free to add as
many of those as you need!

&> 2

Result = Result + “a’;

Result = Result + w_».

if (x == 2) {

Result = Result + “b c¢”;

I MessageBox . Show (Result) ; '

This magnet didn’t £3))

\ string Result = "7/ ' off the "‘\ridgc...

Output:

82 Chapter 2

The fivst time through the

— loo?, % is cl\ual 40 % so this

tonditional Lest will be true.

This s‘l:a'(:cmcn'l: makes x
/—equal to 2 the fipst time

hrough the looP, and | the
gh.

setond time throu

Poo] Puzzle Jolution

Your job was to take code snippets from the

pool and place them into the blank lines
in the code. Your goal was to make a
class that will compile and run.

int x = 0;
String Poem = “7;

while (X <4) {

“w_n,

Poem = Poem + “a”;
if (x <1) {
Poem = Poem + " “;

w_ e,

Poem = Poem + "n";
if (x>1) ¢{

A\

Poem = Poem +

'U
[
)
3
"

Poem
}

XxX=x+1;
}

MessageBox.Show(Poem);

4

Poem + “oise “;

' oyster”;

Poem + “noys “;

.

it’s all just code

Output:

, —1

a noise annoys an oyster

Did you get a different
solution? Type it into the IDE
and see if it works! There’s
more than one correct solution
to the pool puzzle.

.

£ you want a veal ¢thallenge, see if you
tan «Cigwc out what it is/ Here's a hint:
There's another solution that keeps the
word fragmcn{:s in order.

you are here » 83

crossword solution

Csharpeross Solution

N ="M RPN =

84 Chapter 2

3 objects: get oriented!
* x
Maiing code make sense .

Husband class doesn't have a
HelpOutAroundTheHouse()
method or a PullHisOwnWeight()
method.

Every program you write solves a problem.

When you're building a program, it's always a good idea to start by thinking about what

problem your program’s supposed to solve. That's why objects are really useful. They
let you structure your code based on the problem it’s solving, so that you can spend your
time thinking about the problem you need to work on rather than getting bogged down in
the mechanics of writing code. When you use objects right, you end up with code that's

intuitive to write, and easy to read and change.

this is a new chapter

85

mike’s going places

How Mike thinks about his problems

Mike’s a programmer about to head out to a job
interview. He can’t wait to show off his C# skills, but
first he has to get there—and he’s running late!

0 Mike figures out the route he'll take to get to the interview.

86

T'll take the 31st Street
bridge, head up Liberty Avenue,
and go through Bloomfield.

&Mike sets his destination,

then tomes up with a voute.

9 6ood thing he had his radio on. There's
a huge traffic jam that'll make him late!

This is Frank Loudly with
your eye-in-the-sky shadow traffic
report. It looks like a three-car

pileup on Liberty has traffic backed
up all the way to 32nd Street.

ke gets nev
Mtcow?\ajd\on dbout 2 .
w to avord
chreek he need®

e Mike comes up with a new route to get HEEE——
to his interview on time.

Now he ¢an Come up
with a new route to

No problem. If T take
the interview. N

Route 28 instead, T'll
still be on time!

Chapter 3

objects: get oriented!

How Mike’s car navigation system thinks about his problems

Mike built his.own GPS navigation system, which he .Hevc'.s a' diagram oﬁ ; sil:;ss Navigator
uses to help him get around town. in Mike's program. .
fhe name on top, and the SetCurrentLocation()
methods on the bottom. SetDestination()
k_/} ModifyRoute ToAvoid()
SetDestination (“Fifth Ave & Penn Ave”); l\G/lOdFi{fyROl(J)teTOIndUde()
. tRoute
t te;) h €
STrng wone Here's the output (:m.z,{: ¢ GetTimeToDestination()
route = GetRoute(); éc{:Rou{:co method—its TotalDistancel)

a string that tontains the
/\ \ diveetions Mike should follow:

The navigation system sets “Take 3lst Street Bridge to Liberty Avenue to Bloomfield”
a destination and tomes up

with a voute.

The navigation system gets

new information about

street it needs 4o avoid. ’D/
———— 1001 yRoUteToAVO1d (“Liberty Ave”);

N L ean tome WY w\f:\\ a new
ow{:c 1o the dcs{:'ma'\:\ov\.
vow

string route;

— route = GetRoute () ;

“Take Route 28 to the Highland Park Bridge to Washington Blvd”

GetRoute() gives a new voute
that doesn’t intlude the
street Mike wants o avoid.

Mike's navigation system solves the street

navigation Prolylem the same way he does.

you are here » 87

set methods and modify routes

Mike’s Navigator class has methods to set and modify rovtes

Mike’s Navigator class has methods, which are where the action happens. But unlike the
button Click () methods in the forms you've built, they’re all focused around a single
problem: navigating a route through a city. That’s why Mike stuck them together into one
class, and called that class Navigator.

Mike designed his Navigator class so that it’s easy to create and modify routes. To get a
route, Mike’s program calls the SetDestination () method to set the destination, and
then uses the GetRoute () method to put the route into a string. If he needs to change the
route, his program calls the ModifyRouteToAvoid () method to change the route so that was thinking sbout how
it avoids a certain street, and then calls the GetRoute () method to get the new directions. to naviga’cc 3 voute

class Navigator { [_{/— through a eity-

Mike those method
names that would make
sense to someone who

public void SetCurrentlLocation(string locationName) { ... }
public void SetDestination(string destinationName) { ... };
public void ModifyRouteToAvoid(string streetName) { ... };
public (string)GetRoute() { ... };

} This is the return +

Pe of the method. [£ e
. meéans fha{ {:h
chouJ_CcO method can yse it to s:{:—?rin route =
tontain the directions. Wh ’

docsn'{; vreturn athhina. en it's VLM, GetRoute () ;

statement &3 ing The
s{:ring vaviable that will
hat means the method

Some wmethods have a return value

Every method is made up of statements that do things. Some methods just execute
their statements and then exit. But other methods have a return value, or a value
that’s calculated or generated inside the method, and sent back to the statement that
called that method. The type of the return value (like string or int) is called the
return type.

Heve's an example of a method
£hat has a vetuen type—it
vetuwens an int. The method uses
the two ?avamc{;crs +o caleulate

The return statement tells the method to immediately exit. If your method doesn’t the vesult and uses the veturn
have a return value—which means it’s declared with a return type of void—then statement to pass the value
the return statement just ends with a semicolon, and you don’t always have to back to the statement that
have one in your method. But if the method has a return type, then it must use the called it

return statement.
public int MultiplyTwoNumbers (int firstNumber, int secondNumber) {
int result = firstNumber * secondNumber;
return result;
} fake values like 3 and
Here’s a statement that calls a method to multiply two numbers. It returns an int: Methods 3 also use vaviables

5. But you 1915 ethod
int myResult = MultiplyTwoNumbers (3, 5); é/ pass values {o a me

88 Chapter 3

objects: get oriented!

QBUI.I.ET POINTS

m Classes have methods that contain statements that perform actions. You can design a class that is easy to use by
choosing methods that make sense.

m Some methods have a return type. You set a method’s return type in its declaration. A method with a declaration that starts
“public int”returns an intvalue. Here's an example of a statement that returns an int value: return 37;

m When a method has a return type, it must have a return statement that returns a value that matches a return type. So if
you've got a method that’s declared “public string”then you need a return statement that returns a string.

m Assoon as a return statementin a method executes, your program jumps back to the statement that called the method.

= Not all methods have a return type. A method with a declaration that starts “public void” doesn't return anything at
all. You can still use a return statement to exita void method: if (finishedEarly) { return; }

Use what you've learned to build a program that uses a class

Let’s hook up a form to a class, and make its button call a method inside that class. >* Do t}ll S’

o Create a new Windows Forms Application project in the IDE. Then add a class file to it called
Talker.cs by right-clicking on the project in the Solution Explorer and selecting “Class...” from
the Add menu. When you name your new class file “Talker.cs”, the IDE will automatically name
the class in the new file Talker. Then it’ll pop up the new class in a new tab inside the IDE.

e Add using System.Windows.Forms; to the top of the class file. Then add code to the class:

class Talker {
public static int BlahBlahBlah(string thingToSay, int numberOfTimes)
{

This statement 7 string finalString = “”;
detlaves 3 finalString for (int count = 1; count <= numberOfTimes; count++)

vaciable and sets it
co\ua\ o an C"‘Yb/ finalString = finalString + thingToSay + “\n”;

% y This li
string MessageBox.Show (finalString) ; Lo;jccxsojc CE&:;‘E;;::\ d 3 line

return finalString.Length; <_\ break (“\n”) onto +he end of it 4o

} The BlahBlahBlah() method’s veturn value is an the finalgfring vaviable.
integer that has the total length of the message it _
displayed. You ¢an add “.Length” to any string to KTMS is called a property. Every s{'xm5
figure out how long it is. has a property called Length. When .uﬁ
caleulates the length of a string, a line
break (“\n”) counts as one charatter.

> Fli]a the page to keep going!

you are here » 89

introducing objects

So what did you just build? *

The new class has one method called BlahBlahBlah () that takes two parameters. The first
parameter is a string that tells it something to say, and the second is the number of times to say it.
When it’s called, it pops up a message box with the message repeated a number of times. Its return
value is the length of the string. The method needs a string for its thingToSay parameter and a
number for its numberOfTimes parameter. It'll get those parameters from a form that lets the user
enter text using a TextBox control and a number using NumericUpDown control.

Now add a form that uses your new class! ¢ ¢
Set the default tex — S
the TextBox to ‘Hello!” | 8 Talker 'ES'”\V, |

using its Text PVOPCVJC‘/' Saylhis. Hello!

oftimee: 3 E

[spesktomel |

9 Make your project’s form look like this. >

T
Then double-click on the button and have it run this code that calls BlahBlahBlah () and assigns its return
value to an integer called len: This is a NumerieUpDown eontrol.
Set its Minimum Propcr-{;\/ to I, its
Maximum ProPcr{;\/ +o 10, and its
Value property to 3.

int len = Talker.BlahBlahBlah (textBoxl.Text, (int)numericUpDownl.Value);
MessageBox.Show (“"The message length is ” + len);

private void buttonl Click(object sender, EventArgs e)

{

e Now run your program! Click the button and watch it pop up two
message boxes. The class pops up the first message box, and the

form pops up the second one. =z o

When the
The BlahBlahBlah() method . method veturns
pops up this message box :::Il::. a valuc, the form The message length is 21
based on what’s in its Hello! Pops it up in this
parameters. _j) message box. \7

*

R
You can add a class to your Project and share
its methods with the other classes in the project.

90 Chapter 3

It'd be great if I
could compare a few

routes and figure out
which is fastest....

Mike gets an idea p °o

The interview went great! But the traffic ?,A.
jam this morning got Mike thinking about
how he could improve his navigator.

He could create three different Navigator classes...

Mike could copy the Navigator class code and paste it into two more
classes. Then his program could store three routes at once.

objects: get oriented!

This box is a tlass diagram. [+ lists
all of the methods in a class, and

it's an easy way {0 see cvcr\/{')\ing

Navigator ot it does 3k a alance.
SetDestination() Navigator2 l
ModifyRouteToAvoid() : g
ModifyRouteTolnclude() SetDestination() -
GetRoute() ModifyRoute ToAvoid() N?V'Qat°r3
GetTimeToDestination() ModifyRouteTolnclude() SetDestination()
TotalDistance() GetRoute() Mod!fyRouteToAvmd()

GetTimeToDestination() ModifyRouteTolnclude()

TotalDistance() GetRoute()
GetTimeToDestination()
TotalDistance()

Whoa, that can't be right!
What if T want to change a
method? Then I need to go
back and fix it in three places.

Right! Maintaining three copies of the same code
is really messy. A lot of problems you need to solve need a
way to represent one thing a bunch of different times. In this case,
it’s a bunch of routes. But it could be a bunch of turbines, or dogs,
or music files, or anything. All of those programs have one thing in
common: they always need to treat the same kind of thing in the
same way, no matter how many of the thing they’re dealing with.

you are here »

91

for instance...

Mike can use objects to solve his problem

Objects are C#’s tool that you use to work with
a bunch of similar things. Mike can use objects
to program his Navigator class just once, but
use it as many times as he wants in a program.

This is the Naviy ‘oojc i}:}: Navigator
- Mike's proara™ \ Khat 2 SetCurrentLocation()
\.:\\ ok the methods SetDestination()

Navigator o\)\')ccjc tan use: ModifyRoute ToAvoid()

ModifyRouteToInclude()
W GetRoute()
GetTimeToDestination()

TotalDistance()

All you need to create an
object is the new keyword
and the name of a class.

Mike needed to compare
three different voutes
at onte, so he used
three Navigator objects
at the same time.

Navigator navigatorl =(new)Navigator() ;
navigatorl.SetDestination (“Fifth Ave &
string route;

route =<§avigatorf7§etRoute()

Penn Ave”) ;

Now you can use the object! When you
create an object from a class, that object
has all of the methods from that class.

92 Chapter 3

objects: get oriented!

You use a class to build an object

A class is like a blueprint for an object. If you wanted to build
five identical houses in a suburban housing development, you
wouldn’t ask an architect to draw up five identical sets of
blueprints. You’d just use one blueprint to build five houses.

When you define a tlass, Yyou define
its methods, \')us{: like a blueprint
defines the |a\/ou‘[: of the house.

You ¢an use one blueprint 4o
make any number of houses,
and You tan use one ¢tlass o
make any number of ob\)cd:s.

—

An object gets its methods from its class

Once you build a class, you can create as many objects as you want from
it using the new statement. When you do, every method in your class

; 26A Elm
becomes part of the object.

Lane

House

GiveShelter()
GrowLawn()
MailDelivered()
ClogDrainPipes()
AccruePropertyTaxes()
NeedRepairs()

o
%USe 0‘03@

you are here » 93

objects improve your code

When you create a new object from a class,

its called an instance of that class

Guess what...you already know this stuff! Everything in the toolbox
is a class: there’s a Button class, a TextBox class, a Label

class, etc. When you drag a button out of the toolbox, the IDE
automatically creates an instance of the Button class and calls

it buttonl. When you drag another button out of the toolbox,

it creates another instance called button?2. Each instance of
Button has its own properties and methods. But every button acts
exactly the same way, because they’re all instances of the same class.

Before: teve's a picture of Your
COmFu‘[:cr's memory when Your

program stavts.

J

House mapleDrivell5 =

YOW Proaram
c’(ccufcs a new
statement.

new House() ;

A‘(:{-’cr'. NO‘N -“ES

ot an instance

0‘(: the Rouse

¢lass in memovy:

*
Check it out for yourself! * V\DQ t}ll'S.’

Open any project that uses a button called buttonl, *
and use the IDE to search the entire project for the

text “buttonl = new”. You'll find the code that

the IDE added to the form designer to create the

instance of the Button class.

In-stance, noun.

an example or one occurrence of
something. The IDE search-and-
replace feature finds every instance
of a word and changes it to another

94 Chapter 3

objects: get oriented!

A better solution..brought to you by objects! GU1 stands for Graphica

User Interface, which is

. . . . wha ' ildi
Mike came up with a new route comparison program that uses objects to find t yl: ure ‘Fb“"d'"ﬂ when
. o ; ou i
the shortest of three different routes to the same destination. Here’s how he 1 ma e. a Yorm in the
oo orm designer-
built his program.

o Mike set up a GUI with a text box—textBox1 contains the destination for the three
routes. Then he added textBox2, which has a street that one of the routes should aveid; and
textBox3, which contains a different street that the third route has to include.

The naviga{'p\rl

ob\')cc{: is :E 4
i te he
e He created a Navigator object and set its destination. avigator pz{;‘?;a{‘,w elass.
3.5 miles &
Navigator 8)5
SetCurrentLocation() '
SetDestination()
ModifyRoute ToAvoid() , ' ,
ModifyRouteTolnclude() string destination = textBoxl.Text;
GEtROUte() o Navigator navigatorl = new Navigator();
GetTimeToDestination()
TotalDistance() navigatorl.SetDestination (destination);

route = navigatorl.GetRoute();

The SCJ(LDCS‘E\V\G{:\OV\.() ,(_—
9 Then he added a second Navigator object called navigator2. He Mod\{i\lkov{x‘r‘,mo\d .
called its SetDestination () method to set the destination, and Mod\g\[RouheTolnc\udc(-) »
then he called its ModifyRouteToAvoid () method. AR T o
Yavamc{:cr.

e The third Navigator object is called navigator3. Mike set its .
destination, and then called its Modi fyRouteToInclude () method. Any time you

create a new
avigator avigator avigator3]
3.5 miles 3.8 miles 4.2 miles ol»]ect from a
: .) "
class, it's called

creating an

e Now Mike can call each object’s TotalDistance () method to figure . {
out which route is the shortest. And he only had to write the code once, mstance o

not three times! tllat Class.

you are here » 95

a little head first secret sauce

Wait a minute! You didn't give
me nearly enough information
to build the navigator program.

Theory and practice

Speaking of patterns, here’s a pattern that you’ll see over and over again
throughout the book. We’ll introduce a concept or idea (like objects) over the

course of a few pages, using pictures and small code excerpts to demonstrate the
idea. This 1s your opportunity to take a step back and try to understand what’s

going on without having to worry about getting a program to work.

House mapleDrivell5 = new House() ;

When we've introducting a new contept
(like objects), keep your eyes open for
pictures and tode excerpts like this.

After we've introduced a concept, we’ll give you a chance to get it into your
brain. Sometimes we’ll follow up the theory with a writing exercise—like the
Sharpen your pencil exercise on the next page. Other times we’ll jump straight
into code. This combination of theory and practice is an effective way to get
these concepts off of the page and stuck in your brain.

A little advice for the code exercises

If you keep a few simple things in mind, it’ll make the code exercises go
smoothly:

* It’s easy to get caught up in syntax problems, like missing parentheses
or quotes. One missing bracket can cause many build errors.

* It’s much better to look at the solution than get frustrated with a
problem. When you’re frustrated, your brain doesn’t like to learn.

% All of the code in this book is tested and definitely works in Visual
Studio 2010! But it’s easy to accidentally type things wrong (like
typing a one instead of a lowercase L).

* If your solution just won’t build, try downloading it from the Head
First Labs website: http:/ / www.headfirstlabs.com/hfcsharp

96 Chapter 3

That’s right, we didn’t. A geographic navigation program is
a really complicated thing to build. But complicated programs follow
the same patterns as simple ones. Mike’s navigation program is an
example of how someone would use objects in real life.

%USe oo \0

When you run into
a prol)lem with

a coJing exercise,
don't be afraid

to peek at the
solution. You can
also download the
solution from the

Head First Labs

website.

http://www.headfirstlabs.com/hfcsharp

objects: get oriented!

_ rpen your pencil
\\R_ Follow the same steps that Mike followed on the facing page to write
. the code to create Navigator objects and call their methods.
We gave you a head stavt. Heve's
the code Mike wrote 1o get the

destination and street names from
the textboxes.

string destination = textBoxl.Text;
string route2StreetToAvoid = textBox2.Text;
string route3StreetToInclude = textBox3.Text;

Nav.lgator nav1gatolrl =. new Navllgat?r() ; And hcvc’s the tode {,p cha{:f JC::
navigatorl.SetDestination (destination) ; ,\aviga{:o‘r objcd:, set its destination,
int distancel = navigatorl.TotalDistance(); and 55{3 the distance.
1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and use its
| TotalDistance() method to set an integer variable called distance2. |
| Navigator navigator2 = |
| mavigator2. |
| navigator2. |
| int diStance2 S |
L - - - - - - - - - = = = 4
2. Create the navigator3 object, set its destination, call its ModifyRouteTolnclude() method, and use its
| TotalDistance() method to set an integer variable called distance3. |

ilt i mbevs and
th.Min() method built into the NET Framework tompares two nu nd
I:&cuﬁ: the |s'v\mallescjc o‘:\c- Mike used it 4o find the shortest distante to the dcs{:ma’cwvfll

int shortestDistance = Math.Min(distancel, Math.Min (distance2, distance3));

you are here »

97

static cling

_ rpen your pencil
sol tl Follow the same steps that Mike followed on the facing page to write
= u nn the code to create Navigator objects and call their methods.

string destination = textBoxl.Text; We gave You a head start. Here's
the tode Mike wrote to get the

string route2StreetToAvoid = textBox2.Text; destinat;
estination and street names from

string route3StreetTolInclude = textBox3.Text; the textboxes.
Navligator navigato‘rl =. new Nav‘igatclar () And heve's the tode bo cha{; {;:c
navigatorl.SetDestination (destination); naviga{:o\r ob\')ct{l; set its destination,
int distancel = navigatorl.TotalDistance(); and 5& the distante.
]
1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and use its
| TotalDistance() method to set an integer varable called distance2. |
| Navigator navigator2 = new NavigatorQ) |
| navigator2. SetDetinationldestinations |
| navigatorz . MOdi‘C\IROlA‘tCT:)AVOid(V‘OM'ECZS’{:YCC'{:-EJAVOid),' |
| int distance2 = navigator 2. Total Distance(); |
L - - - - - - - - - = = = 4
e T
2. Create the navigator3 object, set its destination, call its ModifyRouteTolnclude() method, and use its
| TotalDistance() method to set an integer varable called distance3. |
I Navigater. naviqator3 = new NaviaaterO) |
N navigator3 SetDestination(destinationl; |
| navigaboé.Modi(:\/RochcTolncludc(vou-te%S’cvchchlm‘.ludc); |

ilt i mbevs and
£h-Min() method built into the .NET Framework tompares two nu nd
I:Euﬁ: the ls‘:nallc:{: oic. Mike used it to find the shortest distante to the dcs{ma{:noyfl/

int shortestDistance = Math.Min(distancel, Math.Min (distance2, distance3));

98 Chapter 3

objects: get oriented!

I've written a few classes now, but I haven't used “hew"
to create an instance yet! So does that mean I can call
methods without creating objects?

class Talker

{

{

string finalString =

public static int BlahBlahBlah(string thingToSay,

Yes! That’s why you used the static keyword in your methods.

Take another look at the declaration for the Talker class you built a few pages ago:

int numberOfTimes)

wrr,
’

When you called the method you didn’t create a new instance of Talker. You just did this:

Talker.BlahBlahBlah (“Hello hello hello”, 5);

i That’s how you call static methods, and you’ve been doing that all along. If you take away

the static keyword from the BlahBlahBlah () method declaration, then you’ll have to

they live in classes.

create an instance of Talker in order to call the method. Other than that distinction, static
methods are just like object methods. You can pass parameters, they can return values, and

There’s one more thing you can do with the static keyword. You can mark your whole
class as static, and then all of its methods must be static too. If you try to add a non-static
method to a static class, it won’t compile.

Dum

Q- When I think of something that’s “static,” I think of
something that doesn’t change. Does that mean non-static
methods can change, but static methods don’t? Do they
behave differently?

- No, both static and non-static methods act exactly the
same. The only difference is that static methods don't require
an instance, while non-static methods do. A lot of people have
trouble remembering that, because the word “static” isn’t really
all that intuitive.

Q; So | can’t use my class until | create an instance of
an object?

- You can use its static methods. But if you have methods
that aren’t static, then you need an instance before you can
use them.

therejare no .
b Questions

Q/: Then why would | want a method that needs an
instance? Why wouldn’t | make all my methods static?

A: Because if you have an object that's keeping track of
certain data—like Mike’s instances of his Navigator
class that each kept track of a different route—then you can
use each instance’s methods to work with that data. So when
Mike called his ModifyRouteToAvoid () method

in the navigator?2 instance, it only affected the route
that was stored in that particular instance. It didn't affect the
navigatorl ornavigator3 objects. That's how he
was able to work with three different routes at the same time—
and his program could keep track of all of it.

Q: So how does an instance keep track of data?
AI Turn the page and find out!

you are here » 99

an object’s state of affairs

An instance uses fields to keep track of things

You change the text on a button by setting its Text property in the
IDE. When you do, the IDE adds code like this to the designer:

buttonl.Text = “Text for the button”;

Now you know that buttonl is an instance of the Button class. ater on.
What that code does is modify a field for the buttonl instance.
You can add fields to a class diagram—just draw a horizontal line in

the middle of it. Fields go above the line, methods go underneath it.

chhnically, it's sc*H:ing a

g.voygi;\/. A roperty is ver
similav 4o a ield—but we'll
9et into all that a little

Class
This is wheve a ¢lass Fiold]
diagram shows the Field2
Fields. Evcv\/ instante Field3
B e sk = Mt b 4
of its state Method1() separate the Fields
‘ ' Method2() £rom the methods.
Method3()

Methods are what an object does. Fields are what the object knows.

When Mike created three instances of Navigator classes, his program created three objects.
Each of those objects was used to keep track of a different route. When the program created the
navigator?2 instance and called its SetDestination () method, it set the destination for that
one instance. But it didn’t affect the navigatorl instance or the navigator3 instance.

Navigator

Destination
Route

SetCurrentLocation()
SetDestination()
ModifyRouteToAvoid()
ModifyRouteTolnclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

100 Chapter 3

Every instance of Navigator knows
its destination and its voute.

What a Navigator obiject does is

é\ let You set a desting ion, modi'(:\/

its vou‘(:c, and gc{: iw(:ovma{:ion
abou'f: ‘U\a*f: rou’(:C-

An ol)ject’s hehavior is defined lay its metlwds,
and it uses fields to keep track of its state.

Let’s ecreate some instances!

It’s easy to add fields to your class. Just declare
variables outside of any methods. Now every
instance gets its own copy of those variables.

TalkAboutYourself()

When you want to eveate instantes }
of Your ¢lass, don't use the static

keyword in either the ¢lass detlaration

or the method detlaration.

objects: get oriented!

uRcmcw\bch when
.void' in front of 3 method,
it means that it doesn't

return any value.

You see

class Clown {

public string Name;
public int Height;

public void TalkAboutYourself () {
MessageBox.Show (“My name is ”

+ Name + “ and I'm

+ Height + ™ inches tall.”);

r”

Remember, the *= operator tells C#
4o take whatever’s on the left of {'):c
opevator and multiply it by whatever's

_ harpen your pencil

Clown oneClown

new Clown () ;
oneClown.Name = “Boffo”;
14;

oneClown.Height

oneClown.TalkAboutYourself () ;

Clown anotherClown

new Clown () ;
anotherClown.Name = “Biff”;
16;

anotherClown.Height

anotherClown.TalkAboutYourself () ;

Clown clown3 new Clown () ;

clown3.Name

anotherClown.Name;

clown3.Height oneClown.Height - 3;

clown3.TalkAboutYourself () ;

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself () ;

on the v'igh{:-
Write down the contents of each message box that will be displayed
after the statement next to it is executed.
“Mynameis_______andI'm______inchestall”
"My nameis_______andI'm______inchestall”
“Mynameis_______andI'm______inchestall”
"My nameis_______andI'm______inchestall”

you are here » 101

a heaping helping of objects

Thanks for the memory

When your program creates an object, it lives in a part of the
computer’s memory called the heap. When your code creates an
object with a new statement, C# immediately reserves space in the

heap so it can store the data for that object. ﬁ
Heve's a picture of the heap bevore the

project starts. Notice that it's empty.

Let’s take a closer look at what happened here \

N %&arpen your pencl
N so . Write down the contents of each message box that will be displayed
i k Iutwn after the statement next to it is executed.

oneClown.Name

git up with the objc(:l:'s data.

oneClown.Height = 14;

oneClown.TalkAboutYourself () ;

Clown anotherClown new Clown () ;
anotherClown.Name = “Bi

anotherClown.Height = 16;

anotherClown.TalkAboutYourself () ;
Clown clown3 =

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

anotherClown.Height *= 2;

Each of these new stat
— € H
Clown oneClown tlass by reserving a chunkm:ztrsn:r::i{c:na"l‘:l:hstahccﬁJ e Clewn
= “Boffo*; object and fillin ! ¢ heap tor that

“My name is _Bip&_ and I'm __’i_ inches tall” /
“My name is _Bﬁ\c__ and I'm __“’__ inches tall” e

clown3.TalkAboutYourself () ; “My name is Bt andrm_Il_inchestallr ===

O\

|\

anotherClown.TalkAboutYourself () ; “My name is E'ﬂ’__ and I'm _17—__ inches tall!

When your program creates a new olaject, it gets added to the heap.

102 Chapter 3

objects: get oriented!

This objeet is an instance of the
What’s on your program’s mind o= Q/

Here’s how your program creates a new instance of the “Boffo"
Clown class: 14 E
Clown myInstance = new Clown () ; é

. “Town 0o\’
That’s actually two statements combined into one. The no

first statement declares a variable of type Clown (Clown
myInstance;). The second statement creates a new

object and assigns it to the variable that was just created
(myInstance = new Clown () ;). Here’s whatt
looks like after each of these statements:

cap

“Boffo”

Clown oneClown = new Clown () ;

oneClown.Name = “Boffo”; The ks @) .
s treated and /OWn oY

oneClown.Height = 14; -\ds ave sel o

Q\C #

oneClown.TalkAboutYourself () ;

C7°Wn 0\5\?’6

‘Q'\YS’\? °b;)ﬁ*'.

Clown anotherClown = new Clown () ;

These statements treate

anotherClown.Name = “Biff”;
. the second object and £ill it
anotherClown.Height = 16; with data.

anotherClown.TalkAboutYourself () ;

“Boffo”

Clown clown3 = new Clown () ; C70Wn o‘o-\@b

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself (); .
/ Then the thivd C\o:ndob\)cc

ereated and populated:

e anotherClown.Height *= 2;
mPp-an10therClown. TalkAboutYourself () ;

Theve's no new tommand, whith means

< Ca
these statements don't eveate a new /OWn 0‘0\?/
objcd‘[:. They've \‘)us{: modi(:ying onc\//';?

that’s alveady in memory.

you are here » 103

making methods make sense

You can use class and method
names to make your code intuitive

When you put code in a method, you’re making a choice about how to structure
your program. Do you use one method? Do you split it into more than one? Or do
you even need a method at all? The choices you make about methods can make your
code much more intuitive—or, if you’re not careful, much more convoluted.

o Here’s a nice, compact chunk of code. It’s from a control program that

runs a machine that makes candy bars. The ehkTe 0
K\—“. emPl) method 4
int €Curns g
int t = m.chkTemp () ; e9er... but what does it do? "

“‘HJ", “'ICS", and umn if (£ > 160) {

are tervible namcs! T tb = new T(); The clsT\r\?\/o

We have no idea tb.clsTrp @ method has one
what they do. And ics.Fill(); arameter, but we
what's that T elass ics.vVent () ; don't know what
Fo\r.? m.airsyschk () ;

it's supposed to be.
}

Take a second and look at that code. Can you figure out what it does?

Those statements don’t give you any hints about why the code’s doing what it’s doing. In this case, the
gwey y y g g)
programmer was happy with the results because she was able to get it all into one method. But making
your code as compact as possible isn’t really useful! Let’s break it up into methods to make it easier to

read, and make sure the classes are given names that make sense. But we’ll start by figuring out what the
code is supposed to do.

How do Yyou fioure ou{',{;‘\:g
. o?

our ode & S\f?YOS_C&:m for General Electronics Type 5 Candy Bar Maker

Well, all code :’ " 4o You to Specification Manual
.Soits v)
a .

zirivio:u{: that rcason\!l In this The nougat temperature must be checked every 3 mlonutes by an
cz?sc we tan look up Ehe pade automated system. If the temperature exceeds 160 (:‘., the (iandy

[J(',;\c 5\’55‘{:-‘(’3{5‘“ mamﬁ d is too hot, and the system must perform the candy isolation

n

ev Yollowed-

fhat the Y“°5Ya""{\ cooling system (CICS) vent procedure.
L/% « Close the trip throttle valve on turbine #2

« TFill the isolation cooling system with a solid stream of water

o Vent the water

« Verify that there is no evidence of air in the system

104 Chapter 3

objects: get oriented!

9 That page from the manual made it a lot easier to understand the code. It also gave us some great
hints about how to make our code easier to understand. Now we know why the conditional test checks
the variable t against 160—the manual says that any temperature above 160°C means the nougat
is too hot. And it turns out that m was a class that controlled the candy maker, with static methods
to check the nougat temperature and check the air system. So let’s put the temperature check into a
method, and choose names for the class and the methods that make the purpose obvious.

public IsNougatTooHot () {

The IsN Sa{:TooHo{:() int temp = Maker.CheckNougatTemperature () ;
e |sNow] i
method's veturn {:\/?c if (temp > 160) { B\/ naming Lhe elass “Maker” and {,';hc
return true; mebhod “CheekNougat Temperature’,
b else | the tode is a lot easier {0 undevstand.
return false; 6\
} .
} This method’s veturn type is

Boolean, which means it veturns 8
Hrue or false value.

e What does the specification say to do if the nougat is too hot? It tells us to perform the candy isolation
cooling system (or CICS) vent procedure. So let’s make another method, and choose an obvious name
for the T class (which turns out to control the turbine) and the ics class (which controls the isolation
cooling system, and has two static methods to fill and vent the system):

public \woid)DoCICSVentProcedure () {
A void veturn

fW‘ 5 Turbine turbineController = new Turbine();
means
the method doesn’t turbineController.CloseTripvalve (2) ;
veturn any value at all. IsolationCoolingSystem.Fill ()
IsolationCoolingSystem.Vent () ;
Maker.CheckAirSystem() ;
}

e Now the code’s a lot more intuitive! Even if you don’t know that the CICS vent procedure needs to
be run if the nougat is too hot, it’s a lot more obvious what this code is doing:

if (IsNougatTooHot () == true) {
DoCICSVentProcedure () ;
}

You can make your code easier to read and write Ly thinking about
the prol)lem your code was built to solve, If you choose names for your
methods that make sense to someone who understands that problem,
then your code will be a lot easier to Jeciplter...anc[JeveloP!

you are here » 105

classes au naturale

Give your classes a natural structure

Take a second and remind yourself why you want to make your methods intuitive:
because every program solves a problem or has a purpose. It might not
be a business problem—sometimes a program’s purpose (like FlashyThing) is just to
be cool or fun! But no matter what your program does, the more you can make your

code resemble the problem you’re trying to solve, the easier your program will be to
write (and read, and repair, and maintain...).

106

Use ¢lass diagrams {:o ?lah ou‘l', \/ow ¢lasses

A class diageam is a simple way to draw your ClassName
tlasses out on paper. [£'s a veally valuable tool Method()
‘(:OY‘ dcsigning Your tode BEFORE YYou S‘{Da\"t Method()
writing it. Method()
Wrike the name of the tlass at the top of
the diagram. Then write eath method in the
box at the bottom. Now you ean see all of the
parts of the elass at a glancc!

-

Let’s build a class diagram

Take another look at the if statement in #5 on the previous page. You already know that statements
always live inside methods, which always live inside classes, right? In this case, that 1 f statement was
in a method called DoMaintenanceTests (), which is part of the CandyController class.
Now take a look at the code and the class diagram. See how they relate to each other?

class CandyController ({

public void DoMaintenanceTests () {

if (IsNougatTooHot () == true) {
DoCICSVentProcedure () ;

public void DoCICSVentProcedure ()

public boolean IsNougatTooHot ()

CandyController

DoMaintenanceTests()

DoCICSVentProcedure()
IsNougatTooHot()

objects: get oriented!

_ q@gﬁn your penci
v The code for the candy control system we built on the previous

page called three other classes. Flip back and look through the
code, and fill in their class diagrams.

We filled in the ¢lass name

or 'U’HS one. Wh
90es heve? at method

Turbine

of Lhe tlasses had
Oah:\c’chod called FNO-
Filli its tlass name
a:\d |T:l;s other method-

There was one other
tlass in the tode on the
Previous page. Fill in its
name and method.

you are here » 107

a few helpful tips

Class diagrams help you organize your
classes so they make sense

Writing out class diagrams makes it a lot easier to spot potential problems in your
classes before you write code. Thinking about your classes from a high level before
you get into the details can help you come up with a class structure that will make
sure your code addresses the problems it solves. It lets you step back and make sure
that you’re not planning on writing unnecessary or poorly structured classes or
methods, and that the ones you do write will be intuitive and easy to use.

Dishwasher Dishwasher
CleanDishes() The class is called CleanDishes()
AddDetergent() “Dishh“éaShher”i:g all ;he AddDetergent()
SetWaterTemperature methods should be about SetWaterT t
ParkTheCar()p 0 — washing dishes. Butone - etWaterTemperature()

method—ParkTheCar()—has

nothing to do with dishes, so it

should be taken out and put in
another class.

_ @ohar r pencil
&Fﬂ yogﬂll;rfwn The code for the candy control system we built on the You tould ‘ci5"" out that

previous page called three other classes. Flip back and Maker if a tlass beeause it
look through the code, and fill in their class diagrams. ~dPpears in front of a dot in

Makcr-ChcckAirS\/s{:cm().
Turbine ,sola‘{:ionCoolinSSys{',Cm Maker (J
Fill()
CloseTripValve() CheckNougat Temperature()

Vent()

108 Chapter 3

harpen your pencil

Class23

objects: get oriented!

CandyBarWeight()
PrintWrapper()
GenerateReport()
Go()

DeliveryGuy

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

DeliveryGirl

AddAPizza()
PizzaDelivered()
T TotalCash()
ReturnTime()

CashRegister

MakeSale()

NoSale()

PumpGas()

Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()

RemoveCash()

Each of these classes has a serious design flaw. Write down what
you think is wrong with each class, and how you'd fix it.

This class is part of the candy manufacturing system from earlier.

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

The CashRegister classis part of a program that’s used by an
automated convenience store checkout system.

you are here »

109

create a class

har r pencil
3 g y“uSoIt;rte.inn

Here’s how we corrected the classes. We show just one
possible way to fix the problems—but there are plenty of other ways

you could design these classes depending on how they’ll be used.;

This class is part of the candy manufacturing system from earlier.

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

We added the Gender field betause we

CandyMaker

CandyBarWeight()
PrintWrapper()
GenerateReport()
MakeTheCandy()

DeliveryPerson

Gender

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

assumed there was a reason +o tratk delivery

quys and girls sc\vara‘ccll, and that's why

Iheve were two tlasses tor them.

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

All of the methods in the elass do stuff that has to do with

CashRegister

MakeSale()

NoSale()

Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

110

Chapter 3

objects: get oriented!

public partial class Forml : Form

{

private void buttonl Click(object sender, EventArgs e)

et e Pool Puzzle

Echo el = new Echo();

Your job is to take code snippets from the
pool and place them into the blank
lines in the code. You may use
the same snippet more than once,
and you won’t need to use all the
snippets. Your goal is to make
classes that will compile and run
and produce the output listed.

int x = 0;

while () |

result = result + el.Hello() + “\n”;

if |) |

e2.count = e2.count + 1;
) Output

if |) | .

e2.count = e2.count + el.count;

hellogoa..,
hellaonn...
helloooa...
helloonn...

} Count: 10

MessageBox.Show (result + “Count: ” + e2.count);

class {
public int = 0; Bonus Question!
public string { If the last line of output was
return “helloooo...”: 24instead 0f1°, hOW W0u|d
} you complete the puzzle?
} You can do it by changing
) just one statement.
Note: Each

snippet from the
pool can be used

more than once! x<5 Echo

x>0 Tester
e2 x> 1 Echo() e2=el;
Count .
elzel+1: count () Echo e2;
Hello() Echoe2=el;

el =count+1;
el.count =count+1;
el.count=el.count +1;

Echo e2 = new Echo();

— Answers on page 122.

you are here » 111

working class guys

Build a class to work with some quys

Joe and Bob lend each other money all the time. Let’s create a class to
keep track of them. We’ll start with an overview of what we’ll build.

o We'll create a Guy class and add two instances of it to a form
The form will have two fields, one called joe (to keep track of the first object),
and the other called bob (to keep track of the second object).

The new statements
fhat eveate the two
instantes live in the

tode that gets vun as

soon as the form is

ereated. Heve's what

4he heap looks like
after the form is
loaded.

e We'll set each Guy object’s cash and name fields
The two objects represent different guys, each with his own name and a
different amount of cash in his pocket.

Each auy has a Name

field that keeps track of
his name, and a Cash ficld

that has the number of
bucks in his Fockc{:-

e We'll give cash to the guys and take cash from them
We’ll use each guy’s ReceiveCash () method to increase a guy’s cash,
and we’ll use his GiveCash () method to reduce it.

Lorm calls the objcc{:’s ReteiveCash()
[t's called ReteiveCash() because
he's veteiving the tash.
— joe.ReceiveCash (25) ;

The
mC‘{Z\’\Od'

Sy obsﬁc’x’&’

112 Chapter 3

2% ob'\\ed‘%

Sy ob}ﬁc‘%

The method veturns the
numbcr o‘('\ bucks ‘[‘)\a{: {:hc 3uy
added 1o his Cash field.

% obje®

Guy

Name
Cash

GiveCash()
ReceiveCash()

B

We those names for the
methods that make sense.
You eall a Gu\/ ob\)ct‘[:’s
GiveCash() method to tell
him to give up some of his
tash, and his ReceiveCash()
method when You want him
to take some tash back.
We ¢ould have called them
GiveCashToSomeone() and
ReteiveCashFromSomeone(),
but that would have been
very long_’

When You take an instante
of 6u\/ and eall its
ReceiveCash() method, you
pass the amount of cash
the quy will take as a
pavameter. So calling joe.
ReceiveCash(25) tells Joe
4o veceive 25 bucks and
add them to his wallet.

43

objects: get oriented!

Create a project for your guys . F
Create a new Windows Forms Application project (because we’ll .
be using a form). Then use the Solution Explorer to add a new f‘ DQ J[}HS-’

* *

class to it called Guy. Make sure to add “using System.

Windows.Forms;” to the top of the Guy class file. Then fill
in the Guy class. Here’s the code for it:

The Quy tlass has two fields. The Name Ffield is
a s-bring, and it'll contain the gu\/'s name (“Joe”).
And the Cash ‘Ficld is an in{:, which will kcc?
class Guy I/ track of how many bucks ave in his pocket.
public string Name;

The GiveCash() method has one parameter
public int Cash;

called amount that \/ou’\l use to tell the
/ guy how muth tash o give You
public int GiveCash(int amount) ({
if (amount <= Cash && amount > 0) {

f statement to theek
The 6“\/ makc's ﬂ Cash -= amount; ‘j::c‘:::ra:: has cnough tash—it he
sure {:hé{: You've return amount; does, he takes it ouk of his potket and
aSkiHS him ‘FOV' a } else {)

positive amount

veturns it as the vetuen value.
of tash, otherwise

MessageBox. Show (

he'd add to his “I don’t have enough cash to give you ” + amount,
4 A\ "y .
cash instead of Name +) says. .. 10) ¢ :
Laking away from return O0; - I+ the guy doesn't have enough cash, he'll
i+ } {:c!I You so with a message box, and then
} he'll make GiveCash() vetuen O.

The ReceiveCash() method works Just like
public int ReceiveCash(int amount) { ,, GiveCash() method [£'s passed an

if (amount > 0) { amount as a pavameter, chetks to make
Cash += amount; P suce that amount is g\rca{:cr than zevro,
return amount; and then adds it to his tash.

} else {
MessageBox.Show (amount + “ isn’t an amount I’1l1l take”,

Name + “ says...”);

return 0; \\ [£ the amount was positive, then the
} ReceiveCash() method veturns the amount
} added. [£ it was zevo or negative, the 9uy

shows a message box and then veturns O.
@_\/ Be caveful with your eurly brackets. [+'s easy to

have the wrong number—make sure that every openin
bracket has a matthing tlosing bracket. When they've
all balanced, the [DE will automatieally indent them
for you when You type the last ¢losing bracket.

you are here » 113

joe says, “where’s my money?”

Build a form to interact with the quys

The Guy class is great, but it’s just a start. Now put together a*e *
a form that uses two instances of the Guy class. It’s got labels

that show you their names and how much cash they have, and [-. Budd -t}) lsy
*

buttons to give and take cash from them.

Q Add two buttons and three labels to your form
The top two labels show how much cash each guy has. We’ll also add a field called bank to the
form—the third label shows how much cash is in it. We’re going to have you name some of the
labels that you drag onto the forms. You can do that by clicking on each label that you want
to name and changing its *(Name)” row in the Properties window. That’ll make your code a
lot easier to read, because you’ll be able to use “joesCashLabel” and “bobsCashLabel” instead of

“labell” and “label2”.

| a5l Fun with Joe and Bob ﬁ Name the top label
JjoesCashL abel, the label
Joe has 550 underneath it bobsCashlabel,

and the bottom label

This button will eall Bob has 5100 bankCashLabel. You ean

the Joe object’s The bank has $100 leave their Text properties

ReceiveCash) method, alone; we'll add a method +o

passing it 10 as the form to set them.

the amount, and 4 Give $10to] Receive $5

Eub{:\r;ac{ing &om the — T Joe o Bb RS This button will eall the Bob

orm’s bank field the \\ objeet’s GiveCash() method,

eash that Joe veceives.

passing it 5 as the amount, and
adding the cash that Bob gives
4o the form’s bank field.

e Add fields to your form
Your form will need to keep track of the two guys, so you’ll need a field for each of them. Call
them joe and bob. Then add a field to the form called bank to keep track of how much money
the form has to give to and receive from the guys.

namespace Your Project Name {

.) .
Sinte we've using public partial class Forml : Form {

6u\/ ob")té{‘,s to

keep track of Guy joe; The smount of

Joe and Bob, Guy bob; Ny Eun : tash
detlave] _ . K\ ' orm's bank

\{/:T\ucir Lields in int bank = 1007 field 90¢es up and down

the form using public Forml () { dc?"‘d'hs on how muth

the 6“‘/ class. InitializeComponent () ; money the form 9ave to

and veteived from the
} 6!4)’ ob\)cc'l:s.

114 Chapter 3

objects: get oriented!

e Add a method to the form to update the labels
The labels on the right-hand side of the form show how much cash each guy has and how much
1s in the bank field. So add the UpdateForm () method to keep them up to date—make sure
the return type is void to tell C# that the method doesn’t return a value. Type this method
into the form right underneath where you added the bank field: This new method
is Sim?lc. It :)MS{:

bli id UpdateF
public voi pdateForm () { u?da{xs Lhe three

Notice how the labels joesCashLabel.Text = joe.Name + “ has $” + joe.Cash; labels b‘/ SC‘H:ing
avre upda«l;cd “Si“S the bobsCashLabel.Text = bob.Name + “ has $” + bob.Cash; their Text PVOPcr{:ics.
60\\/ of‘)cd:s) Namc and bankCashLabel.Text = “The bank has $” + bank; You)” have eath
Cash fields.) button call it to keep

the labels up to date.

e Double-click on each button and add the code to interact with the objects
Make sure the left-hand button is called buttonl, and the right-hand button is called button2.
Then double-click each of the buttons—when you do, the IDE will add two methods called
buttonl Click() andbutton2 Click() to the form. Add this code to each of them:

private void buttonl Click(object sender, EventArgs e) {

if (bank >= 10) { When the user clicks the “Give £10 +o
bank -= joe.ReceiveCash (10); Joe” button, the form ¢alls the Joe
UpdateForm() ; ochcfs RCLcchCash() mtﬂ'\od—bu{: only

if the bank has enough money.

} else {

MessageBox.Show (“"The bank is out of money.”);

} The bank needs at least ,"lO 1o give to
} Joe. [£ there's not enough, it'll pop up
this message box.

private void button2 Click(object sender, EventArgs e) {
bank += bob.GiveCash (5);

UpdateForm () ; The “Receive f’5 from Bob” button
doesn't need to theck how muth is
in the bank, because it'll just add

(. H: Bob’s out o(: money),
whatever Bob gives back N_ oo il vebrn v

e Start Joe out with $50 and start Bob out with $100
It’s up to you to figure out how to get Joe and Bob to start out with their Cash and
Name fields set properly. Put it right underneath InitializeComponent () in the form.
That’s part of that designer-generated method that gets run once, when the form is first initialized.

Once you've done that, click both buttons a number of times—make sure that one button takes
$10 from the bank and adds it to Joe, and the other takes $5 from Bob and adds it to the bank.

public Forml () {
eitialisecomonent () L Add the lines of tode heve 4o
ereate the two objeets and set
their Name and Cash fields.

// Initialize joe and bob here!

ExerciSe '’

you are here » 115

exercise solution

It’s up to you to figure out how to get Joe and Bob to start out with their Cash

ExerciSe

two set its fields.

joe =
joe.Name

Make sure you eall UpdateForm() so
the labels look vight when the form
Fivst Pops up-

new Guy () ;

joe.Cash = 50;

and Name fields set properly. Put it right underneath InitializeComponent () in

InitializeComponent () ;

new Guy () ;

5 S0 the form.

oLut\O

Lut\ON public Forml () {
Heve's wheve we set up the (.:ivs{:

instante of 6u\/ The Liest line bob =

cveates the objeets and the next bob . Name

- \\Bobll ;

bob.Cash = 100;

Then we do the same for the
setond instante of the éu\/ ¢lass.

= AN Joe ” ,.

\/é UpdateForm() ;
}

therejare no
b Questions

Dum

Q,: Why doesn’t the solution start with “Guy bob = new
Guy () ”? Why did you leave off the first “Guy”?

A: Because you already declared the bob field at the top of the
form. Remember how the statement“int i = 5;”is the same
as the two statements “int i”and“i = 5;"? Thisis the same
thing. You could try to declare the bob field in one line like this:
‘Guy bob = new Guy () ;" Butyou already have the first
part of that statement (‘Guy bob ;") at the top of your form. So
you only need the second half of the line, the part that sets the bob
field to create a new instance of Guy ().

Q: OK, so then why not get rid of the “Guy bob;” line at
the top of the form?

A- Then a variable called bob will only exist inside that special
‘public Forml ()” method. When you declare a variable
inside a method, it's only valid inside the method—you can’t access
it from any other method. But when you declare it outside of your
method but inside the form or a class that you added, then you've
added a field accessible from any other method inside the form.

116 Chapter 3

Make sure You save the
yro)cét now—-wcln tome

back to it in d few pages-

L

Q,: What happens if | don’t leave off that first “Guy”?

A: You'll run into problems—your form won’t work, because it
won't ever set the form’s bob variable. Think about it for a minute,
and you'll see why it works that way. If you have this code at the top
of your form:

public partial class Forml
Guy bob;

Form {

and then you have this code later on, inside a method:

Guy bob = new Guy();

then you've declared two variables. It's a little confusing, because
they both have the same name. But one of them is valid throughout
the entire form, and the other one—the new one you added—is only
valid inside the method. The next line (bob .Name = “Bob”;)
only updates that local variable, and doesn’t touch the one in the
form. So when you try to run your code, it'll give you a nasty error
message (‘NullReferenceException not handled”), which just means
you tried to use an object before you created it with new.

objects: get oriented!

There’s an easier way to initialize objects Object intializers

Almost every object that you create needs to be initialized in some way. save you time an(I
And the Guy object is no exception—it’s useless until you set its Name k C[
and Cash fields. It’s so common to have to initialize fields that C# gives make your coae

you a shortcut for doing it called an object initializer. And the IDE’s
IntelliSense will help you do it.

more compact
and easier to
Here’s the original code that you wrote to r ea(I...an(I tlle

initialize Joe’s Guy object. IDE llel])s you

joe = new Guy() ;

:?oe.l;am:.: = ;goe”; write tltem.
joe.Cash = ;

Delete the second two lines and the semicolon after “Guy () ,” and add a right curly bracket.
joe = new Guy () {

Press space. As soon as you do, the IDE pops up an IntelliSense window that shows you all of
the fields that you’re able to initialize.

joe = new Guy() {

¥ Mame

Press tab to tell it to add the Cash field. Then set it equal to 50.
joe = new Guy() { Cash = 50

Type in a comma. As soon as you do, the other field shows up.

Finish the object initializer. Now you’ve saved yourself two lines of code!

joe = new Guy() { Cash = 50,

joe = new Guy() { Cash = 50, Name = “Joe” };

This new detlaration does cxac’cl\/ the same j\
thing as the three lines of tode you wrote
originally. [+s)us{: shorter and easier to vead.

you are here » 117

a few helpful tips

A few ideas for designing intuitive classes

» You're building your program to solve a problem.

Spend some time thinking about that problem. Does it break down into pieces
easily? How would you explain that problem to someone else? These are good
things to think about when designing your classes.

It'd be great if T
could compare a few
routes and figure out
which is fastest....

» What real-world things will your program use?

A program to help a zoo keeper track her animals’ feeding schedules might have
classes for different kinds of food and types of animals.

Use descriptive names for classes and methods.
Someone should be able to figure out what your classes and methods do just by
looking at their names.

@ bestRoute 45)
6)\
% ObieS /\’Ol/igmoV

Look for similarities between classes.

X D

Sometimes two classes can be combined into one if they're really similar. The candy

manufacturing system might have three or four turbines, but there’s only one
method for closing the trip valve that takes the turbine number as a parameter.

BlockedRoad i Detour
Name ClosedRoad Name
Duration StreetName Duration
ReasonltsClosed ReasonltsClosed
FindDetour() - :
CalculateDelay() FindDetour()
CalculateDelay()
T—
118 ChaptT_

objects: get oriented!

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.

Q Use an object initializer to initialize Bob's instance of Guy
You've already done it with Joe. Now make Bob’s instance work with an object

£ you alrcad\/ tlicked the button, \')us{: delete
it, add it back to your Lorm, and vename it.

Then delete the old button3 Clitk() method
that the [DE added before, and use the new

initializer too.

e Add two more buttons to your form

method it adds now.

The first button tells Joe to give 10 bucks to Bob, and the second tells Bob to give 5
bucks back to Joe. Before you double-click on the button, go to the Properties
window and change each button’s name using the “(Name)” row—it’s at the top of
the list of properties. Name the first button joeGivesToBob, and the second one

bobGivesToJdoe.

-

This button tells Joe to
give 10 bueks to Bob, so)
you should use the “(Name)
vow in the Properties
window 4o name it

\‘)océivcsToBoh &/

) Fun with Joe and Bob Iﬁ

Joe has 50
Bob has $100
The bank has 5100
Give 510to Receive 35
Joe from Bab

| Joe gives 810 ‘ ‘ Bob gives &5

» to Bob

\

J

9 Make the buttons work
Double-click on the joeGivesToBob button in the designer. The IDE will add a
method to the form called joeGivesToBob Click () that gets run any time the
button’s clicked. Fill in that method to make Joe give 10 bucks to Bob. Then double-
click on the other button and fill in the new bobGivesToJoe Click () method
that the IDE creates so that Bob gives 5 bucks to Joe. Make sure the form updates itself
after the cash changes hands.

This button Lells Bob +o
give 5 bucks to Joe. Name
it bobGives ToJoe.

| J

you are here »

119

exercise solution

Add buttons to the “Fun with Joe and Bob” program to make the guys give each other cash.
L 4
RCASe
SoLution
public partial class Forml : Form {
Guy joe; Heve ave the object initializers for
Guy bob; the two instances of the 6.,\/ ¢lass.
int bank = 100; Bob 5c{:s initialized with |00 bucks
and his name.
public Forml () {
InitializeComponent () ;
bob = new Guy() { Cash = 100, Name = “Bob” };
joe = new Guy() { Cash = 50, Name = “Joe” };
UpdateForm() ;
}
public void UpdateForm() {
joesCashlLabel.Text = joe.Name + “ has $” + joe.Cash;
bobsCashLabel.Text = bob.Name + “ has $” + bob.Cash; To make Joe give tash
bankCashLabel.Text = “The bank has $” + bank; to BOb, we eall Joe's
} GiveCash() method and
send its vesults into
private void buttonl Click(object sender, EventArgs e) ({ Bob’s RCCcchCashO
if (bank >= 10) { method.
bank -= joe.ReceiveCash(10);
UpdateForm() ;
} else { F
ak
MessageBox.Show (“"The bank is out of money.”); € a tlose look at
} how the 6uy methods
) are being called. The
vesults veturned
private void button2 Click(object sender, EventArgs e) { b)’ échCashO are
The 4viek heve is bank += bob.GiveCash (5); pumped right into
thinking through UpdateForm() ; ReceiveCash() as its
who's 5iv'm3 the ?aramc{:cr.
)
LaSh_ a.“d .WH°S private void joeGivesToBob Click (object sender, EventaArgs e) {
receving it bob.ReceiveCash (joe.GiveCash (10)) ;
UpdateForm() ;
}
private void bobGivesToJoe Click (object sender, EventArgs e) {
joe.ReceiveCash (bob.GiveCash (5)) ;
UpdateForm() ;
}
}

Before you go on, take a minute and flip to #1 in the “Leftovers” appendix,
120 Chapter 3 pecause there’s some basic syntax that we haven’t covered yet. You won’t
need it to move forward, but it’s a good idea to see what’s there.

Objectcross

objects: get oriented!

It’s time to give your left brain a break, and put that

right brain to work: all the words are object-related

and from this chapter.

Sl
il
al
Across
2. If a method’s return type is , it doesn’t return anything

7. An object’s fields define its

9. Agood method
does

makes it clear what the method

10. Where objects live

11. What you use to build an object

13. What you use to pass information into a method
14. The statement you use to create an object

15. Used to set an attribute on controls and other classes

c

Down

1. This form control lets the user choose a number from a range
you set

3. It's a great idea to create a class
you start writing code

on paper before

4. An object uses this to keep track of what it knows
5. These define what an object does
6. An object’s methods define its

7. Don't use this keyword in your class declaration if you want to
be able to create instances of it

8. An object is an of a class

12. This statement tells a method to immediately exit, and can
specify the value that should be passed back to the statement
that called the method

you are here » 121

puzzle solutions

Poo] Puzzle Jolution

Your job was to take code snippets from

the pool and place them into the
blank lines in the code. Your goal
was to make classes that will
compile and run and produce the
output listed.

7
@

public partial class Forml : Form
{
private void buttonl Click(object sender, EventArgs e)

{

String result = “; That's the correct answer.

Echo el = new Echo(); And here’s the bonus answer!
_ . <

Etho e2 = new Ethol); Etho e = el;

int x = 0;

while (x<4) |
result = result + el.Hello() + “\n”;
el.tount = el.tount + |;
if (* ==) |

e2.count = e2.count + 1;
}
if | x>0) |

e2.count = e2.count + el.count;

MessageBox.Show (result + “Count: ” + e2.count);

class _ Etho |
public int & = 0;
public string HelledO

return “helloooo...”;

122 Chapter 3

objects: get oriented!

PR O PIER TV

173

== o= e
~ =
i i

Objecteross Solution

123

you are here »

but wait... there’s more!

Hey, you! Are you loolcing for a way to get ProJuctive fast
with C#, NET and Visual Studio 2010?

I'm still hungry for morel

*

Thanks for reading the
first three chapters of
Head First C#, the fastest
way to learn to program
with C# and the .NET
framework. Like what you
read so far? Then have a
look at the next few pages
to see what’s coming next!

Do \/ou wan{: +p 5:‘[: C#
?\rog\ramming Lovxcc‘?'l',s and ideas
stuek in your brain... fast?

Wouldn't it be dreamy
* if there was a C# book that
D 0 you want to ____lear n C# 1’)’ was more fun than endlessly
1 1 : . debugging code? It's probably
l)l[ll(llllg Pt’O]eCtS anJ SOlVlllg nothing but a fantasy....
puzzles?

Ave you the kind of person who likes o
learn by doing, vather than ?o\r'mg '{:hrough
Pages and pages of dry veference matevial?

*

Looking for the easiest way to become a great C# programmer?

Look no further! All this and more is here toJay. Introducing
ok n ! i
H(e)aJ First C#, 2nd edition! *

A Brain-Friendly Guide

Head Fipgst

A Learner's Guide to
Real-Worlq Programming
with Visua] gz and .NET

Boss your
data aroung
| with LINQ

Discover the
Secrets of % :

abstraction and

inheritance i

-
£y

functiona]

retro classic N x
arcade game _ v Ve

Build g fully /

’ : Learn how ' — /
i % extension 4
methods helped ‘

See how Jim used
generic collections to
Wrangle his datg,

Sue bend the
rules in Objectville

OREILLY® » Andrew Stellman

& Jennifep Greene

Get a handle on C#

Head First C# is a complete learning v ——
experience for programming with C#
5 .
the NET F & K and i Visual Use encapsulation to control access to your
€. ramework, and the Visua p i
. ’ class’s methods and fields
Stule IDE. Bullt fOI‘ yOuI‘ bra1n7 thlS When you make all of your fields and methods public, any other class
. can access them. Everything your class does and knows about becomes
bOOk covers C # and .NET 4’. O and VlSual an open book for every other class in your program.. .and you just saw
: . how that can cause your program to behave in ways you never vxpc(:lcd.
Stule 20 1 O, and teaCheS CVGI‘ythlng Encapsulation lets you control what you share and what you keep private
. inside your class. Lets see how this works:
from inheritance to serialization. SecretAgent
o Super-spy Herb Jones is defending life, liberty, and the pursuit of Alias
happiness as an undercover agent in the R. His ciafgent object is RealName
form of...2 bucket of caole! an instance of the SecretAgent class. Password
...a bucket of eagles
™ RealName: “Herb Jones” AgentGreeting()
Yeu Alias: “Dash Martin”
ely) password: “the crow flies at midnight”
OK, I think I've got a ve [P
X
pretty good handle on Fir 0'496“
objects now! You
© pro EnemyAgent
i 9 Agent Jones has a plan to help him evade the enemy KGB agents. He Borscht
9 . - added an AgentGreeting () method that takes a password as its Vodka
You're an object orienteg parameter. If he doesn’t get the right password, he’ll only reveal his
There’s a name for what you've) alias, Dash Martin. Conlactcomra_d%l)
object oriented programmix OverthrowCapitalists()
languages like C# came along, pq
objects and methods when writing . -
Just used functions (which is what e Seems like a foolproof way to protect the agent’s 1d(',n.tlly: right? As
anon-OOP program) that were long as the agent object that calls it doesn’t have the right password,
if cach program were just one bi the agent’s name is safe.
had static methods. It made it a | ok is a
programs that modeled the probld The L"’A%"i: b{:f\,ih;ent The KGB agent \ASCS:)’“ wrond
Luckily, you'll never have to write ‘“Sb““haic K \:A‘.‘:"‘t is an o parked outside”) password in his 87€€ Yy
N ~ . “ i arked
OOP, because it’s a core part of (} ?liz:n:t 'o{: éncm\(ABC“{'“ AgentGreeting (“the jeep P
The four principles of object oriented programwming @ “Gaen wertin” Cf'a,;gei L
n
"l@}h‘fn.grogrammcrs talk about OO, they’re referring to four important principles. ’{:96 Age™ \
hey s ould seem very familiar to you by now because you've been working) The K4B only gets the alias of
with every one of them. You'll recognize the first three principles just from their 9 e CIA agent: Pecfect. Right?
names: inheritance, abstraction, and encapsulation. The last one’s called f '
polyn'mrplusm. It sounds a little odd, but it turns out that you already know all M 192 Chapter 5
about it too. P

- ther ¢las ;
This just means having one zh Ses work with o}
¢lass or intevface that € Part of the internal g .
inherits from another. Eh3t they need 4y seg - o You’ll query your data with LINQ) ,

X Inheritance)
>*

* Abstraction

You've using abstrattion when you
eveate a tlass model that starts with

draw graphics and animation, and
learn all about classes and object
oriented programming, all through
building games, doing hands-on

* Encapsulation @/) *

The word “yolymovyhism"
* likevally means “many
Lorms”. Can you Fhink of
3 time when an objeet
has taken on many torms

o . in your tode? . .
e e e Polymorphism projects, and solving puzzles. You’ll
that inhevit from it * * become a solid C# programmer, and

306

Chapter 7

you’ll have a great time along the
way!

Flip through the next few pages to
get a sneak peek at the topics you’ll
learn about!

Ua
Exe

o

(5]

When You use the buili—in | Pt

enums and collections

Create five random cards and then sort them.
.
RCiSQ

Create code to make a jumbled set of cards
Create a new Console Application and add cade to the Main () method that creates five random
Card objects. After you create each object, use the built-in Console.WriteLine () method to
write its name to the output. Use Console. ReadKey () at the end of the program to keep your
window from disappearing when the program finishes.
Create a class that implements IComparer<Card> to sort the cards
Here’s a good chance to use that IDE shorteut to implement an interface:

class CardComparer byValue : IComparer<Card>
Then click on IComparer<Card> and hover over the L. You'll see a box appear underncath it.
When you click on the box, the IDE pops up its “Implement interface” window:
ICompa-e~<Ca~d>
Sometimes it's a little havd to /
get this box to pop up, so the [+

Build over 100
different Projects!
You'll build
everytlling from

a carJ game an(I

a text editor to a
full-blown retro
classic arcade game,

-

[DE has a useful shorteut: Just Implement j
press etrl-period. Explictly i ol Gg Fish!

=)

Click on “Implement interface IComparer<Card>| *four name
in all of the methods and properties that you need Ed
Compare () method to compare two cards, x and
bigger than y, —1 if it’s smaller, and 0 if they’re the| Game progress
comes after any jack, which comes after any four, W
Ed asks if anyone has a Seven
Joe has 2 Sevens

Bob has 0 Sevens

Joe asks if amyone has a Ten
Ed has 0 Tens

Make sure the output looks right

Here’s what your output window should look like a

8 | files/// e/ Users/andrew/document

e £ Cl
Console WriteLinel) ?l‘:nczrumf{ ds Bob has 0 Tens

Your hand

to this output. Console.
ReadKey() waits for You
to press a key before the

Program ends.

>

method, it adds a line Beven of Spades

hree nf Cluhs

hoce came cardec, corted:

pades
Diamonds
of Clubsa

Test your typing speed with this
“Hit the kc\/s_’” game that you'll build

in thapter 4

Joe must draw from the stock.
Bob asks if anyone has a Queen
Ed has 0 Queens

Joe has 0 Queens

Bob must draw from the stock.
Ed has 7 cards.

Joe has 4 cands.

Bob has 10 cards.

The stock has 4 cards left.

Books

Ed has a book of Fives
Joe has a book of Aces
Ed haz a book of Fours
Bob has a book of Nines

Three of Spades
Seven of Spades
Seven of Clubs
Seven of Hearts
Eight of Diamonds
King of Clubs

l Ask for a card]

Correct: 18 Missed: 3 Total: 21 Accuracy: 85%

Difficulty

& Play Go Fish! against
Compu{t\r o‘??oncn{:s in
this game \/ou’“ build in
thapter @.

reading and w

sw.WriteLine (zap) I;'
wred orange”/

Dozens of puzzles
and crosswords

Zap = !
return true;

StreamWriter Magnets

lick () shown
Suppose you have the code for buttonl_.C

below. Your job is to use the magnets to build code for the Flobbo
class so that when the event handler is called, it produces the

output shown at the bottom of the page. Good luck!
i i)i

EventArgs e) { sw.WriteLine (Zap t .

get programming

private void buttonl Click(object sender, ew.Close () ;
Flobbo £ = new Flobbo (“blue yellow”) ; return false;

StreamWriter sw = £.Snobbo();
f.Blobbo (f .Blobbo (f.Blobbo(sw) , SW), SW); k .
concepts stuck 1n

} public bool Blobbo
(bool Already, StreamWriter sw) {

your brain.

c bool Blobbo (Streamﬂn.te:
sw.WriteLine (Zap) ;
Zap = “green purple”;
return false;

publi

return new . .
streamWriter (macaw. txt”)

DY 5
\ Poo| Puzz]e

public Flobb
this.zap| %/
// Youriob is to take code snippets from the pool and place them
into the blank lines in the code and output. You may use the
Sarne snippet more than once, and you won't need to use all the
shippets. Your goal is to make a set of classes that will compile
and run and produce the output fisted. :

interfaces and sbstract classes

if (Already|

: ’ . b “ "
string Face { get; } public override ase (“Acts)((}

ol

}
public Stre return 5;
}),
abstract class Heve's th
. 5SS } ¢ entry point 4.
Output: public virtua Complete O Flrg:am this is a
aca { -
Fle Edt return 7;
blue yell)
e orang public Picasso(string face) } 98t { return “of76”; }
! : { public static void Main(string[] args) {
string result = way

.................. Nose[] i = new Nose([3];
i[0] = new Acts();
i[1] = new Clowns (),

.......... L [
Jr i[2] = new Of76() ;
String face; for (int x = 0; x < 37 x++)
) result += (+ N
+ L) ey

}
MessageBox. Show (result) ;
' _—

In Fridgc Magnc‘{:s, You

put the code in the right }

order to get the torreet } :

output. [t's the easy way oy o

£0 Icarh C# Syh{a%. Note: Each snippet o
from the pool can L’

be used more than
once!

Nose(); Class i

Of76(); abstract i
Clowns(); interface i gg Cla|SS
Picassol): it garg S Acts
Fill in the blanks from thoices Oi7e L " Nosell - this oo 7PUblicclas: Nose
P this. 6
. H Nose []i = new Nase(); set iE
n {:hc FOOI +,O 5C‘£ ‘{‘,"‘C COdC Nose [1i = new Nose[B)]; :;?:face return i[x]afz(:ﬁ() ,S,IS:S':;
i[x].Ear(
ilx].Face

to mateh the answev.

> Answers on page 324.

youare here » 308

controls

Build {uuy Build your first animated control

You're going to build your own control that draws an animated bee

.
anlmtec[picture. If you've never done animation, it’s not as hard as it sounds: you

draw a sequence of pictures one after another, and produce the illusion of
movement. Lucky for us, the way C# and .NET handle resonrees makes it

ll. s really easy for us to do animation. Onte You download the four bee
gra]) lc R animation picture

s (Bee animation L.pn

through Bee animation 4.png) from
First Labs, you'll add {hcfns to your oo
Programs‘ proJc::{s vesources. When you £lash these
fom— bees quickly one after anothey, it'll
,ll L look like theiv wings are £lapping.
You'll be
\ < (e
amazed at 57
\
how slick your

aPPS 1001(once

Download the images for this chapter
, from the Head First Labs website:
If you build BeeControl right, it'll 4 appear as a control

you master that you can drag out of your toolbox and onto your form. WWW_l\eaJ‘[ir'stlal)s,com/l)oo](s/

Itll look just like a PictureBox showing a picture of a 1\{ 11 /
bee, except that iCll have animated flapping wings. Cs af'P

We want a control in the toolbox

grapltics!

\asses)
fend the vioht ¢
= "B X e or
control n the \DE +oolbor.

R Pointer e —

i# BeeControi

> All Windows Fnrme

»

4 BeeControl on a form Components

a5 Forml

i | | The Hive
o2 Beehive Simulator &J
Pause simulation Reset [HS

H Bees [

T he hi :111200

Total honey in the hive)

Total nectarin the field ~ 34.390 This is like 3
Frames run 983 image is set,
Frame rate 16 (62.5ms) that well bui
ldle: 1bes what ¢lass Be

Flying ToFlower: 2 bees
GatheringMectar: 1bee
Retuming ToHive: 2 bees

Bee#1: Idle

The Field

B

: Simulate life in a beehive with
this animated beehive simulator.

take a byte out of crime

C# can use byte arrays to wove data around

Since all your data ends up encoded as bytes, it makcis sl:.nszv to
think of afile as one big byte array. And you already kno
how to read and write byte arrays.

te a byte aveays
s the tode to tred -
o Saf ;\au’c stream amig "&dc i:“”
?‘,J:: bytes 0 through b
n

byte[] greeting;

greeting = File.ReadAllBytes (filename);
7 byte variables
I 2 3 & s ¢
?Z 101 108 108 111 33 3
These numbeys are
g he Unitod b
. tic method for the Lo e
']f'\h‘:aifss 1:{31 veverses H\‘c “Ho»", %’C e e
-
bytes. We've Wy
o*dcr:‘ {l,:cb‘js“ow Lrat the
. R . .
:::“‘;;?IW make o the b\’h Array.Reverse (greeting) ;

From tlneory to
practice, you'll cover
everytlting from
ol)ject oriented
]orogramming to file
1/0 to c[uerying your
data with LINQ.
It's a complete C#
learning experience!

File.WriteAllBytes (filename, greeting);

arvay et witten out to the
file exactly-

7 byte variables

Q1010101010

2 3 & ¢ &
33 33 111 108 108 101 7,

m writes the
05;:3{0 a file, the
e order too:

When the pr
byte aveay o«

Lexk is in vevers

f

Now the bytes ave in

veverse ordev.

“ftellol!” h of those
the bytes in “Hello! only works because eat] h
}L{:;:;‘Ecﬁrs is ov:lc byte long. Can you figure out. why this won't work

448 for 1202

Chapter 9

now how to collect nectar
can maintain the hive and
do every job in the hive. So you
her a way to assign a job to

‘ﬂ# Beehive Management System

Warker Baa Assignments
Workar bas joh

Nectar colector

Egg care

Hive maintenance

Baby bes futoring

Honey manufactunng
patrol

This drop—down list shows all six Jjobs that the
workers ¢an do.The queen knows what Jjobs need
to be done, and she doesn't veally cave which bee
does eath job. So she just seleets which job has to
be done—the program will figuee out if “theve’s a

o

shift by clicking the “Work the next

how many more shifts they’ll be working each job,

it of control, and

and manufacture honey, others
patrol for enemies. A few bees can
r program will need to give
any bee that's available to do it.

worker available to do it and assign the job to him.

When the jobs are all assigned,
Once the queen’s done assigning the wo:

ashift report that tells her which bees worked that shif,

inheritance

ment system

s

s got a bechive full -

%
system to help
work:

r workers
e workers can do. Some

%

[_\Thc bees work shif'ts,

and most. Jobs vequire
more than one shift.
So the queen enters
the number of shifis
the job will take, and
clicks the “Assign
this job” button

o=’ Beehive Management System

Woarker Bea Assignments

1€ there's a bee
available 4o do +he jobs
the program assigns

the Job to the bee and

lets the queen know >
it's taken care of

Th

€ queen bee says... =

The job Honey manufacturing will be done in 2 shifts

it's time to work

rk, she’ll tell the bees to work the next
” button. The program then generates
» what jobs they did, and

shift

you are here

The best way to learn C# is to
write lots of code

The Finished Product

-cs” application is
1l know your “Day at the Races \\\\ cuion
V hen y f ace their bets @ a
\1”“ hen your guys can place thelr
done when your 843

Every few chapters you will come across a
20 e of them vt & lab that lets you apply what you’ve learned
up to that point. Each lab is designed to
simulate a professional programming task,
increasing in complexity until-at last-you
build a working Invaders game, complete
with shooting ships, aliens descending
while firing, and an animated death
sequence for unlucky starfighters. This
remarkably engaging book will

have you going from zero to 60 with
C# in no time flat.

the dogs race.

al Invaders

You can JownloaJ a {inished executahle,
a(; well as the graphics files for the11
four J,ogs anJ the racetrack, from the </BDW |
J First labs website: a’o;’ig
gzlw.h:atﬁirst\ahs.com/ boo\cs/ Hcslnar? e

a5 The Quest

\

I. | Down |
% Aftack

- [w |

g * Lt | | Right

| Down |

Player &
: Bat

/ / é Ghost 8
Ghoul 10

5 Head First C#, Second Editic %

€ 3| C|] v hip:/[oreilly.com/catalog 9781449380342/ Ol'der Yours deav!

Home | Books & Videos |Answers l News & Commentary | Safari Books Online | Conferences | Tra

BO0,
[

O'REILLY

BOOkS & VIdEOS Buy Direct and Save Available af fi"e bOOksfores
Head First C#, Second Edition a"d Whemvel’

A Learner's Guide to Real-World Programming wit| ,
C# and .NET ®
By Andrew Stellman, Jennifer Greene
Publisher: O'Reilly Media
Released: May 2010
Pages: B4B
o]

Write 3 Review

books are sold.

+ Buy2| @& 1) Free «\00“"“
Get 1 FREE — & “Shipping Gui“an\f"
See larger cover I* Discount Code OPC1D I+ O Onediers > 529.95 I* More
A ShareThis Description | Related Content | Product Details | Custome

Abaut the Authors

(g

Description

Develop good programming habits, such as refactoring code and applying unit tests
Learn how web services put your programs in touch with the rest of the world
Make it easy for other peaple to install your software

Exampl
: Registzre‘\four Book You want to learn C# programming, but you're not sure you want to suffer through another tedious technical book. You're in luck:
« View/Submit Errata Head First C# introduces this language in a fun, visual way. You'll quickly learn everything from creating your first program to
« Media Praise learning sophisticated coding skills with C# 4.0, Visual Studio 2010 and .NET 4, while avoiding comman errors that frustrate many
students.
Got a Question? = Full Description
You want to learn C# programming, but you're not sure you want to suffer through another tedious technical book. You're in luck:
@ Q A GE Head First C# introduces this language in a fun, visual way. You'll quickly learn everything from creating your first program to
learning sophisticated coding skills with C# 4.0, Visual Studic 2010 and .MET 4, while avoiding commaon errors that frustrate many
Do you have a question students.
about O'Reilly's products
and services": Shnar—e an The second edition offers several hands-on labs along the way ta help you build and test programs using skills you've learned up
idea! Report a problem... to that point. In the final lab, you'll put everything together. From objects to garbage collection and from exceptions to
— interactions, you'll learn C# in a way that engages and entertains your brain. Here are a few of the topics you'll learn:
—— » Start by building a useful application with pre-buiit components in Visual Studio 2010
(Continue)
e » Discover how objects work, using real-world examples
» Store numbers, text, and other basic data types using primitives
= Service and suppott by s Save complex data in files and databases with great C# tools
satisfactio » Build intuitive and easy-to-use interfaces by following simple rules
atistaction « Design your code to catch exceptions -- things you don't expect
-
.
.

The fun's \')us{: bcginningl *
Learn move at the Head
Fivst C#— website.

http:/www.headfirstlabs.com/books/hfesharp/

	Head First C#, 2nd Edition (the first three complete chapters)
	Table of Contents (the real thing)
	Intro. How to use this book.
	Who is this book for?
	We know what you’re thinking.
	And we know what your brain is thinking.
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend your brain into submission:
	What you need for this book:
	Read me
	The technical review team
	Acknowledgments
	Safari® Books Online

	Chapter 1. Get productive with C#. Visual Applications, in 10 minutes or less
	Why you should learn C#?
	C# and the Visual Studio IDE make lots of things easy.
	Help the CEO go paperless.
	Get to know your users’ needs before you start building your program.
	Here’s what you’re going to build.
	What you do in Visual Studio…
	What Visual Studio does for you…
	Develop the user interface.
	Visual Studio, behind the scenes
	Add to the auto-generated code.
	You can already run your application.
	Where are my files?
	Here’s what we’ve done so far.
	We need a database to store our information.
	The IDE created a database.
	SQL is its own language.
	Creating the table for the Contact List
	The blanks on the contact card are columns in our People table.
	Finish building the table.
	Insert your card data into the database.
	Connect your form to your database objects with a data source.
	Add database-driven controls to your form.
	Good programs are intuiti ve to use.
	Test drive
	How to turn YOUR application into EVERYONE’S application.
	Give your users the application.
	You’re NOT done: test your installation.
	You’ve built a complete data-driven application
	CSharpcross
	CSharpcross Solution

	Chapter 2. It’s all just code. Under the hood
	When you’re doing this…
	…the IDE does this
	Where programs come from
	The IDE helps you code.
	When you change things in the IDE, you’re also changing your code.
	Anatomy of a program
	Your program knows where to start.
	You can change your program’s entry point.
	Two classes can be in the same namespace.
	Your programs use variables to work with data.
	C# uses familiar math symbols.
	Use the debugger to see your variables change.
	Loops perform an action over and over.
	Time to start coding.
	Set up conditions and see if they’re true.
	if/else statements make decisions.
	Csharpcross
	Csharpcross Solution

	Chapter 3. Objects: get oriented!Making code make sense
	How Mike thinks about his problems
	How Mike’s car navigation system thinks about his problems
	Mike’s Navigator class has methods to set and modify routes.
	Use what you’ve learned to build a program that uses a class.
	Mike gets an idea
	Mike can use objects to solve his problem.
	You use a class to build an object.
	When you create a new object from a class, it’s called an instance of that class.
	A better solution…brought to you by objects!
	An instance uses fields to keep track of things.
	Let’s create some instances!
	Thanks for the memory.
	What’s on your program’s mind?
	You can use class and method names to make your code intuitive.
	Give your classes a natural structure.
	Class diagrams help you organize your classes so they make sense.
	Build a class to work with some guys.
	Create a project for your guys.
	Build a form to interact with the guys.
	There’s an easier way to initialize objects.
	A few ideas for designing intuitive classes
	Objectcross
	Objectcross Solution

	Want to learn more? Check out the rest of Head First C#!

